凸多邊形的三角化與二元樹的一對一證明

How many ways can a convex polygon of n(≥3) sides be triangulated by diagonals that do not intersect? The problem was first proposed by Leonard Euler. Instead of setting up a recurrence relation and using the method of generating function to solve it, we shall set up a one-to-one correspondence betw...

Full description

Bibliographic Details
Main Authors: 李世仁, Lee, Shih-Jen
Language:英文
Published: 國立政治大學
Subjects:
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22B2002002892%22.
Description
Summary:How many ways can a convex polygon of n(≥3) sides be triangulated by diagonals that do not intersect? The problem was first proposed by Leonard Euler. Instead of setting up a recurrence relation and using the method of generating function to solve it, we shall set up a one-to-one correspondence between the convex-polygon triangulations we are trying to count the rooted binary trees that have already been counted. Let bn denote the number of rooted ordered binary trees with n vertices and let tn denote the number of triangulations of convex polygon with n sides. We conclude that tn=bn=1/(n-1) ((2n-4)¦(n-2)).