A Study of Strategy for Guessing Game

  In this paper, we consider a number-guessing game in which the competitor guesses numbers from several hints. If the competitor guesses at least one numbers correctly, he/she can keep on guessing the remaining incorrect numbers. We first explore the case when the hints are uniformly distributed. W...

Full description

Bibliographic Details
Main Author: 張智凱
Language:英文
Published: 國立政治大學
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22A2010000641%22.
id ndltd-CHENGCHI-A2010000641
record_format oai_dc
spelling ndltd-CHENGCHI-A20100006412013-01-07T19:36:06Z A Study of Strategy for Guessing Game 張智凱   In this paper, we consider a number-guessing game in which the competitor guesses numbers from several hints. If the competitor guesses at least one numbers correctly, he/she can keep on guessing the remaining incorrect numbers. We first explore the case when the hints are uniformly distributed. When the competitor has more information about the right numbers, there are different strategies to guess numbers. We study the optimal strategy in such case.   In uniform case, we use recursive method to compute the winning probability. In non-uniform case, we find that the optimal strategy is to choose the most probable hints of each number. 國立政治大學 http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22A2010000641%22. text 英文 Copyright © nccu library on behalf of the copyright holders
collection NDLTD
language 英文
sources NDLTD
description   In this paper, we consider a number-guessing game in which the competitor guesses numbers from several hints. If the competitor guesses at least one numbers correctly, he/she can keep on guessing the remaining incorrect numbers. We first explore the case when the hints are uniformly distributed. When the competitor has more information about the right numbers, there are different strategies to guess numbers. We study the optimal strategy in such case.   In uniform case, we use recursive method to compute the winning probability. In non-uniform case, we find that the optimal strategy is to choose the most probable hints of each number.
author 張智凱
spellingShingle 張智凱
A Study of Strategy for Guessing Game
author_facet 張智凱
author_sort 張智凱
title A Study of Strategy for Guessing Game
title_short A Study of Strategy for Guessing Game
title_full A Study of Strategy for Guessing Game
title_fullStr A Study of Strategy for Guessing Game
title_full_unstemmed A Study of Strategy for Guessing Game
title_sort study of strategy for guessing game
publisher 國立政治大學
url http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22A2010000641%22.
work_keys_str_mv AT zhāngzhìkǎi astudyofstrategyforguessinggame
AT zhāngzhìkǎi studyofstrategyforguessinggame
_version_ 1716467726716764160