雙半折疊解析度IV之二水準部份因子設計

  在二水準部份因子設計的領域中,〔半折疊設計〕(semifolding design)的觀念和技巧在解析度III和IV的設計裡已有詳盡的介紹與探討,如Mee and Peralta (2000)和Ting and Hsu (2002),本篇論文主要是針對16-run, 32-run及64-run解析度IV的設計,利用Ting and Hsu (2002)所提的概念與作法,進行半折疊與雙半折疊(double-semifolding)。本論文所建議之雙半折疊過程為先將原始設計分成四個部份,然後再對其中一部份進行折疊。文中將表列最佳子集選取的因子組合,並將應用實例來對雙半折疊設計,半折疊設計與全折...

Full description

Bibliographic Details
Main Author: 葉紫君
Language:中文
Published: 國立政治大學
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22A2010000300%22.
Description
Summary:  在二水準部份因子設計的領域中,〔半折疊設計〕(semifolding design)的觀念和技巧在解析度III和IV的設計裡已有詳盡的介紹與探討,如Mee and Peralta (2000)和Ting and Hsu (2002),本篇論文主要是針對16-run, 32-run及64-run解析度IV的設計,利用Ting and Hsu (2002)所提的概念與作法,進行半折疊與雙半折疊(double-semifolding)。本論文所建議之雙半折疊過程為先將原始設計分成四個部份,然後再對其中一部份進行折疊。文中將表列最佳子集選取的因子組合,並將應用實例來對雙半折疊設計,半折疊設計與全折疊設計做一比較。 ===   In the area of 2-level fractional factorial design, the concept and techniques of semifolding have been developed for resolution III & IV design, ex. Mee and Peralta (2000) and Ting Hsu (2002). This paper, however, focuses on 16-run, 32-run, and 64-run resolution IV design. We apply the semifolding procedure proposed by Ting and Hsu (2002) and extend it to duoble-semifolding. The procedure we suggest in doing duble semifolding is to block the original design into four sections, and then to fold over on one section. The "optimal" blocking factors are listed in tables, and the performancr of double semifolding designs in comparison with that of full foldover designs and semifolding designs are shown by means of examples.