A robust & reliable Data-driven prognostics approach based on extreme learning machine and fuzzy clustering.
Le Pronostic et l'étude de l'état de santé (en anglais Prognostics and Health Management (PHM)) vise à étendre le cycle de vie d'un actif physique, tout en réduisant les coûts d'exploitation et de maintenance. Pour cette raison, le pronostic est considéré comme un processus clé a...
Main Author: | |
---|---|
Language: | English |
Published: |
Université de Franche-Comté
2014
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-01025295 http://tel.archives-ouvertes.fr/docs/01/02/52/95/PDF/These_Kamran_Javed_As2M.pdf |
id |
ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-01025295 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
sources |
NDLTD |
topic |
[SPI:AUTO] Engineering Sciences/Automatic [SPI:AUTO] Sciences de l'ingénieur/Automatique / Robotique Prognostics Data-driven Extreme learning Machine Fuzzy Clustering RUL |
spellingShingle |
[SPI:AUTO] Engineering Sciences/Automatic [SPI:AUTO] Sciences de l'ingénieur/Automatique / Robotique Prognostics Data-driven Extreme learning Machine Fuzzy Clustering RUL Javed, Kamran A robust & reliable Data-driven prognostics approach based on extreme learning machine and fuzzy clustering. |
description |
Le Pronostic et l'étude de l'état de santé (en anglais Prognostics and Health Management (PHM)) vise à étendre le cycle de vie d'un actif physique, tout en réduisant les coûts d'exploitation et de maintenance. Pour cette raison, le pronostic est considéré comme un processus clé avec des capacités de prédictions. En effet, des estimations précises de la durée de vie avant défaillance d'un équipement, Remaining Useful Life (RUL), permettent de mieux définir un plan d'actions visant à accroître la sécurité, réduire les temps d'arrêt, assurer l'achèvement de la mission et l'efficacité de la production. Des études récentes montrent que les approches guidées par les données sont de plus en plus appliquées pour le pronostic de défaillance. Elles peuvent être considérées comme des modèles de type " boite noire " pour l'étude du comportement du système directement à partir des données de surveillance d'état, pour définir l'état actuel du system et prédire la progression future de défauts. Cependant, l'approximation du comportement des machines critiques est une tâche difficile qui peut entraîner des mauvais pronostics. Pour la compréhension de la modélisation de pronostic guidé par les données, on considère les points suivants. 1) Comment traiter les données brutes de surveillance pour obtenir des caractéristiques appropriées reflétant l'évolution de la dégradation ? 2) Comment distinguer les états de dégradation et définir des critères de défaillance (qui peuvent varier d'un cas à un autre)? 3) Comment être sûr que les modèles définis seront assez robustes pour montrer une performance stable avec des entrées incertaines s'écartant des expériences acquises, et seront suffisamment fiables pour intégrer des données inconnues (c'est à dire les conditions de fonctionnement, les variations de l'ingénierie, etc.)? 4) Comment réaliser facilement une intégration sous des contraintes et des exigences industrielles? Ces questions sont des problèmes abordés dans cette thèse. Elles ont conduit à développer une nouvelle approche allant au-delà des limites des méthodes classiques de pronostic guidé par les données. Les principales contributions sont les suivantes. <br>- L'étape de traitement des données est améliorée par l'introduction d'une nouvelle approche d'extraction des caractéristiques à l'aide de fonctions trigonométriques et cumulatives qui sont basées sur trois caractéristiques : la monotonie, la "trendability" et la prévisibilité. L'idée principale de ce développement est de transformer les données brutes en indicateur qui améliorent la précision des prévisions à long terme. <br>- Pour tenir compte de la robustesse, la fiabilité et l'applicabilité, un nouvel algorithme de prédiction est proposé: Summation Wavelet-Extreme Learning Machine (SWELM). Le SW-ELM assure de bonnes performances de prédiction, tout en réduisant le temps d'apprentissage. Un ensemble de SW-ELM est également proposé pour quantifier l'incertitude et améliorer la précision des estimations. <br>- Les performances du pronostic sont également renforcées grâce à la proposition d'un nouvel algorithme d'évaluation de la santé: Subtractive-Maximum Entropy Fuzzy Clustering (S-MEFC). S-MEFC est une approche de classification non supervisée qui utilise l'inférence de l'entropie maximale pour représenter l'incertitude de données multidimensionnelles. Elle peut automatiquement déterminer le nombre d'états, sans intervention humaine. <br>- Le modèle de pronostic final est obtenu en intégrant le SW-ELM et le S-MEFC pour montrer l'évolution de la dégradation de la machine avec des prédictions simultanées et l'estimation d'états discrets. Ce programme permet également de définir dynamiquement les seuils de défaillance et d'estimer le RUL des machines surveillées. Les développements sont validés sur des données réelles à partir de trois plates-formes expérimentales: PRONOSTIA FEMTO-ST (banc d'essai des roulements), CNC SIMTech (Les fraises d'usinage), C-MAPSS NASA (turboréacteurs) et d'autres données de référence. En raison de la nature réaliste de la stratégie d'estimation du RUL proposée, des résultats très prometteurs sont atteints. Toutefois, la perspective principale de ce travail est d'améliorer la fiabilité du modèle de pronostic. |
author |
Javed, Kamran |
author_facet |
Javed, Kamran |
author_sort |
Javed, Kamran |
title |
A robust & reliable Data-driven prognostics approach based on extreme learning machine and fuzzy clustering. |
title_short |
A robust & reliable Data-driven prognostics approach based on extreme learning machine and fuzzy clustering. |
title_full |
A robust & reliable Data-driven prognostics approach based on extreme learning machine and fuzzy clustering. |
title_fullStr |
A robust & reliable Data-driven prognostics approach based on extreme learning machine and fuzzy clustering. |
title_full_unstemmed |
A robust & reliable Data-driven prognostics approach based on extreme learning machine and fuzzy clustering. |
title_sort |
robust & reliable data-driven prognostics approach based on extreme learning machine and fuzzy clustering. |
publisher |
Université de Franche-Comté |
publishDate |
2014 |
url |
http://tel.archives-ouvertes.fr/tel-01025295 http://tel.archives-ouvertes.fr/docs/01/02/52/95/PDF/These_Kamran_Javed_As2M.pdf |
work_keys_str_mv |
AT javedkamran arobustreliabledatadrivenprognosticsapproachbasedonextremelearningmachineandfuzzyclustering AT javedkamran robustreliabledatadrivenprognosticsapproachbasedonextremelearningmachineandfuzzyclustering |
_version_ |
1716716484077551616 |
spelling |
ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-010252952014-10-14T03:22:53Z http://tel.archives-ouvertes.fr/tel-01025295 http://tel.archives-ouvertes.fr/docs/01/02/52/95/PDF/These_Kamran_Javed_As2M.pdf A robust & reliable Data-driven prognostics approach based on extreme learning machine and fuzzy clustering. Javed, Kamran [SPI:AUTO] Engineering Sciences/Automatic [SPI:AUTO] Sciences de l'ingénieur/Automatique / Robotique Prognostics Data-driven Extreme learning Machine Fuzzy Clustering RUL Le Pronostic et l'étude de l'état de santé (en anglais Prognostics and Health Management (PHM)) vise à étendre le cycle de vie d'un actif physique, tout en réduisant les coûts d'exploitation et de maintenance. Pour cette raison, le pronostic est considéré comme un processus clé avec des capacités de prédictions. En effet, des estimations précises de la durée de vie avant défaillance d'un équipement, Remaining Useful Life (RUL), permettent de mieux définir un plan d'actions visant à accroître la sécurité, réduire les temps d'arrêt, assurer l'achèvement de la mission et l'efficacité de la production. Des études récentes montrent que les approches guidées par les données sont de plus en plus appliquées pour le pronostic de défaillance. Elles peuvent être considérées comme des modèles de type " boite noire " pour l'étude du comportement du système directement à partir des données de surveillance d'état, pour définir l'état actuel du system et prédire la progression future de défauts. Cependant, l'approximation du comportement des machines critiques est une tâche difficile qui peut entraîner des mauvais pronostics. Pour la compréhension de la modélisation de pronostic guidé par les données, on considère les points suivants. 1) Comment traiter les données brutes de surveillance pour obtenir des caractéristiques appropriées reflétant l'évolution de la dégradation ? 2) Comment distinguer les états de dégradation et définir des critères de défaillance (qui peuvent varier d'un cas à un autre)? 3) Comment être sûr que les modèles définis seront assez robustes pour montrer une performance stable avec des entrées incertaines s'écartant des expériences acquises, et seront suffisamment fiables pour intégrer des données inconnues (c'est à dire les conditions de fonctionnement, les variations de l'ingénierie, etc.)? 4) Comment réaliser facilement une intégration sous des contraintes et des exigences industrielles? Ces questions sont des problèmes abordés dans cette thèse. Elles ont conduit à développer une nouvelle approche allant au-delà des limites des méthodes classiques de pronostic guidé par les données. Les principales contributions sont les suivantes. <br>- L'étape de traitement des données est améliorée par l'introduction d'une nouvelle approche d'extraction des caractéristiques à l'aide de fonctions trigonométriques et cumulatives qui sont basées sur trois caractéristiques : la monotonie, la "trendability" et la prévisibilité. L'idée principale de ce développement est de transformer les données brutes en indicateur qui améliorent la précision des prévisions à long terme. <br>- Pour tenir compte de la robustesse, la fiabilité et l'applicabilité, un nouvel algorithme de prédiction est proposé: Summation Wavelet-Extreme Learning Machine (SWELM). Le SW-ELM assure de bonnes performances de prédiction, tout en réduisant le temps d'apprentissage. Un ensemble de SW-ELM est également proposé pour quantifier l'incertitude et améliorer la précision des estimations. <br>- Les performances du pronostic sont également renforcées grâce à la proposition d'un nouvel algorithme d'évaluation de la santé: Subtractive-Maximum Entropy Fuzzy Clustering (S-MEFC). S-MEFC est une approche de classification non supervisée qui utilise l'inférence de l'entropie maximale pour représenter l'incertitude de données multidimensionnelles. Elle peut automatiquement déterminer le nombre d'états, sans intervention humaine. <br>- Le modèle de pronostic final est obtenu en intégrant le SW-ELM et le S-MEFC pour montrer l'évolution de la dégradation de la machine avec des prédictions simultanées et l'estimation d'états discrets. Ce programme permet également de définir dynamiquement les seuils de défaillance et d'estimer le RUL des machines surveillées. Les développements sont validés sur des données réelles à partir de trois plates-formes expérimentales: PRONOSTIA FEMTO-ST (banc d'essai des roulements), CNC SIMTech (Les fraises d'usinage), C-MAPSS NASA (turboréacteurs) et d'autres données de référence. En raison de la nature réaliste de la stratégie d'estimation du RUL proposée, des résultats très prometteurs sont atteints. Toutefois, la perspective principale de ce travail est d'améliorer la fiabilité du modèle de pronostic. 2014-04-09 eng PhD thesis Université de Franche-Comté |