Modèles multiplicatifs du risque pour des événements successifs en présence d'hétérogénéité
L'analyse du risque de survenue d'événements récurrents est une motivation majeure dans de nombreuses études de recherche clinique ou épidémiologique. En cancérologie, certaines stratégies thérapeutiques doivent être évaluées au cours d'essais randomisés où l'efficacité est mesur...
Main Author: | |
---|---|
Language: | fra |
Published: |
Université Paris Sud - Paris XI
2012
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00997551 http://tel.archives-ouvertes.fr/docs/00/99/75/51/PDF/VD_PENICHOUX_JULIETTE_17092012.pdf |
Summary: | L'analyse du risque de survenue d'événements récurrents est une motivation majeure dans de nombreuses études de recherche clinique ou épidémiologique. En cancérologie, certaines stratégies thérapeutiques doivent être évaluées au cours d'essais randomisés où l'efficacité est mesurée à partir de la survenue d'événements successifs marquant la progression de la maladie. L'état de santé de patients infectés par le VIH évolue en plusieurs étapes qui ont pu être définies par la survenue d'événements cliniques successifs.Ce travail de thèse porte sur les modèles de régression du risque pour l'analyse de la survenue d'événements successifs. En pratique, la présence de corrélations entre les temps d'attente séparant les événements successifs est une hypothèse qui peut rarement être écartée d'emblée. L'objectif de la thèse porte sur le développement de modèles de régression permettant d'évaluer une telle corrélation. Dans ce cadre, la méthode le plus souvent utilisée suppose que la corrélation entre les délais successifs a pour origine une hétérogénéité aléatoire, non observée, entre sujets. Le modèle correspondant définit le risque instantané individuel en fonction d'un terme aléatoire, ou " fragilité ", de distribution gamma et dont la variance quantifie l'hétérogénéité entre sujets et donc la corrélation entre délais d'un même sujet. Cependant, l'utilisation de ce modèle pour évaluer l'ampleur des corrélations présente l'inconvénient de conduire à une estimation biaisée de la variance de la fragilité.Une première approche a été définie pour deux événements successifs dans une échelle de temps " par intervalles ", c'est-à-dire où le risque est exprimé en fonction du temps écoulé depuis l'événement précédent. L'approche mise au point a été obtenue à partir d'une approximation du risque de second événement conditionnellement au premier délai dans un modèle à fragilité pour plusieurs distributions de fragilité. Une seconde approche a été définie en échelle de temps " calendaire ", où le risque est exprimé en fonction du temps écoulé depuis le début du suivi du sujet. L'approche retenue a été obtenue à partir d'une approximation de l'intensité conditionnelle au passé dans un modèle à fragilité. Dans les deux échelles de temps, l'approche mise au point consiste à introduire une covariable interne, calculée sur le passé du processus, qui correspond à la différence entre le nombre d'événements observés pour le sujet sur la période passée, et le nombre attendu d'événements pour ce sujet sur la même période compte tenu de ses covariables externes. Une revue de la littérature des études de simulations a montré que le cas d'une hétérogénéité dans la population face au risque d'événement était souvent envisagé par les auteurs. En revanche, dans beaucoup d'études de simulations, le cas d'un risque dépendant du temps, ou d'une dépendance entre événements, n'étaient pas considérés. Des études de simulations ont permis de montrer dans les deux échelles de temps considérées un gain de puissance du test mis au point par rapport au test d'homogénéité correspondant au modèle à fragilité gamma. Ce gain est plus marqué en échelle de temps par intervalles. Par ailleurs, dans cette échelle de temps, le modèle proposé permet une amélioration de l'estimation de la variance de la fragilité dans le cas d'une hétérogénéité faible ou modérée, plus particulièrement pour de petits échantillons.L'approche développée en échelle de temps par intervalles a été utilisée pour analyser les données d'une cohorte de patients infectés par le VIH, montrant une corrélation négative entre le délai entre infection et première manifestation mineure d'immunodéficience et le délai entre première manifestation mineure d'immunodéficience et stade SIDA déclaré. |
---|