Cryptanalyse physique de circuits cryptographiques à l'aide de sources LASER

Les circuits cryptographiques, parce qu'ils contiennent des informations confidentielles, font l'objet de manipulations frauduleuses, appelées communément attaques, de la part de personnes mal intentionnées. Plusieurs attaques ont été répertoriées et analysées. L'une des plus efficace...

Full description

Bibliographic Details
Main Author: Roscian, Cyril
Language:FRE
Published: Ecole Nationale Supérieure des Mines de Saint-Etienne 2013
Subjects:
DFA
AES
Online Access:http://tel.archives-ouvertes.fr/tel-00966923
http://tel.archives-ouvertes.fr/docs/00/96/69/23/PDF/Roscian-Cyril-diff.pdf
Description
Summary:Les circuits cryptographiques, parce qu'ils contiennent des informations confidentielles, font l'objet de manipulations frauduleuses, appelées communément attaques, de la part de personnes mal intentionnées. Plusieurs attaques ont été répertoriées et analysées. L'une des plus efficaces actuellement, appelée cryptanalyse DFA (Differential Fault Analysis), exploite la présence de fautes, injectées volontairement par l'attaquant par exemple à l'aide d'un laser, dans les calculs. Cependant, les modèles de fautes utilisés dans ces attaques sont parfois très restrictifs et conditionnent leur efficacité. Il est donc important de bien connaître quel modèle de faute est pertinent ou réalisable en fonction du circuit cible et du moyen d'injection (dans notre cas le laser). Un première étude portant sur le type de fautes (Bit-set, Bit-reset ou Bit-flip) injectées sur des points mémoires SRAM a mis en évidence la forte dépendance des fautes injectées vis à vis des données manipulées et la quasi inexistence de fautes de type Bit-flip. Ce dernier résultat favorise grandement les attaques de type Safe Error et engendre donc un réel problème de sécurité. La mise en évidence de tels résultats a été possible grâce à des cartographies de sensibilité au laser réalisées sur une cellule SRAM isolée puis sur la mémoire RAM d'un micro-contrôleur 8 bits. Pour confirmer ces résultats expérimentaux, des simulations SPICE d'injection de fautes laser ont été réalisées à partir d'un modèle développé dans l'équipe. Ce modèle prend en compte la topologie de la cible. Des tests ont ensuite été réalisés sur un circuit ASIC implémentant l'algorithme AES. L'analyse des fautes a montré la présence des trois types de fautes mais aussi un faible taux d'injection. En revanche, le taux de répétabilité des fautes était particulièrement élevé. Cela nous a permis d'améliorer une attaque existante et d'obtenir au final une attaque plus efficace que les attaques classiques, nécessitant moins de chiffrements fautés et une analyse des résultats réduite pour retrouver la clef secrète. Enfin, une évaluation des contre-mesures embarquées dans ce circuit a montré leurs inefficacités vis à vis des attaques en fautes par laser. Des pistes d'amélioration ont ensuite été proposées.