Réseaux de neurones et acquisition de l'information parcimonieuse

This thesis studies a neural network inspired by human neocortex. An extension of the recurrent and binary network proposed by Gripon and Berrou is given to store sparse messages. In this new version of the neural network, information is borne by graphical codewords (cliques) that use a fraction of...

Full description

Bibliographic Details
Main Author: KAMARY ALIABADI, Behrooz
Language:ENG
Published: 2013
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00962603
http://tel.archives-ouvertes.fr/docs/00/96/26/03/PDF/2013telb0278_Kamary_Aliabadi_Behrooz.pdf
id ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-00962603
record_format oai_dc
spelling ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-009626032014-03-26T03:24:09Z http://tel.archives-ouvertes.fr/tel-00962603 WS_BIBLI_TB: 13845 http://tel.archives-ouvertes.fr/docs/00/96/26/03/PDF/2013telb0278_Kamary_Aliabadi_Behrooz.pdf Réseaux de neurones et acquisition de l'information parcimonieuse KAMARY ALIABADI, Behrooz [MATH:MATH_IT] Mathematics/Information Theory [MATH:MATH_IT] Mathématiques/Théorie de l'information et codage [INFO:INFO_IT] Computer Science/Information Theory [INFO:INFO_IT] Informatique/Théorie de l'information Neural Networks Neural Coding Distributed Coding Compressed Sensing Parsimony This thesis studies a neural network inspired by human neocortex. An extension of the recurrent and binary network proposed by Gripon and Berrou is given to store sparse messages. In this new version of the neural network, information is borne by graphical codewords (cliques) that use a fraction of the network available resources. These codewords can have different sizes that carry variable length information. We have examined this concept and computed the capacity limits on erasure correction as a function of error rate. These limits are compared with simulation results that are obtained from different experiment setups. We have finally studied the network under the formalism of information theory and established a connection between compressed sensing and the proposed network. 2013-06-26 ENG PhD thesis
collection NDLTD
language ENG
sources NDLTD
topic [MATH:MATH_IT] Mathematics/Information Theory
[MATH:MATH_IT] Mathématiques/Théorie de l'information et codage
[INFO:INFO_IT] Computer Science/Information Theory
[INFO:INFO_IT] Informatique/Théorie de l'information
Neural Networks
Neural Coding
Distributed Coding
Compressed Sensing
Parsimony
spellingShingle [MATH:MATH_IT] Mathematics/Information Theory
[MATH:MATH_IT] Mathématiques/Théorie de l'information et codage
[INFO:INFO_IT] Computer Science/Information Theory
[INFO:INFO_IT] Informatique/Théorie de l'information
Neural Networks
Neural Coding
Distributed Coding
Compressed Sensing
Parsimony
KAMARY ALIABADI, Behrooz
Réseaux de neurones et acquisition de l'information parcimonieuse
description This thesis studies a neural network inspired by human neocortex. An extension of the recurrent and binary network proposed by Gripon and Berrou is given to store sparse messages. In this new version of the neural network, information is borne by graphical codewords (cliques) that use a fraction of the network available resources. These codewords can have different sizes that carry variable length information. We have examined this concept and computed the capacity limits on erasure correction as a function of error rate. These limits are compared with simulation results that are obtained from different experiment setups. We have finally studied the network under the formalism of information theory and established a connection between compressed sensing and the proposed network.
author KAMARY ALIABADI, Behrooz
author_facet KAMARY ALIABADI, Behrooz
author_sort KAMARY ALIABADI, Behrooz
title Réseaux de neurones et acquisition de l'information parcimonieuse
title_short Réseaux de neurones et acquisition de l'information parcimonieuse
title_full Réseaux de neurones et acquisition de l'information parcimonieuse
title_fullStr Réseaux de neurones et acquisition de l'information parcimonieuse
title_full_unstemmed Réseaux de neurones et acquisition de l'information parcimonieuse
title_sort réseaux de neurones et acquisition de l'information parcimonieuse
publishDate 2013
url http://tel.archives-ouvertes.fr/tel-00962603
http://tel.archives-ouvertes.fr/docs/00/96/26/03/PDF/2013telb0278_Kamary_Aliabadi_Behrooz.pdf
work_keys_str_mv AT kamaryaliabadibehrooz reseauxdeneuronesetacquisitiondelinformationparcimonieuse
_version_ 1716654713151160320