Réseaux de neurones et acquisition de l'information parcimonieuse
This thesis studies a neural network inspired by human neocortex. An extension of the recurrent and binary network proposed by Gripon and Berrou is given to store sparse messages. In this new version of the neural network, information is borne by graphical codewords (cliques) that use a fraction of...
Main Author: | |
---|---|
Language: | ENG |
Published: |
2013
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00962603 http://tel.archives-ouvertes.fr/docs/00/96/26/03/PDF/2013telb0278_Kamary_Aliabadi_Behrooz.pdf |
id |
ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-00962603 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-009626032014-03-26T03:24:09Z http://tel.archives-ouvertes.fr/tel-00962603 WS_BIBLI_TB: 13845 http://tel.archives-ouvertes.fr/docs/00/96/26/03/PDF/2013telb0278_Kamary_Aliabadi_Behrooz.pdf Réseaux de neurones et acquisition de l'information parcimonieuse KAMARY ALIABADI, Behrooz [MATH:MATH_IT] Mathematics/Information Theory [MATH:MATH_IT] Mathématiques/Théorie de l'information et codage [INFO:INFO_IT] Computer Science/Information Theory [INFO:INFO_IT] Informatique/Théorie de l'information Neural Networks Neural Coding Distributed Coding Compressed Sensing Parsimony This thesis studies a neural network inspired by human neocortex. An extension of the recurrent and binary network proposed by Gripon and Berrou is given to store sparse messages. In this new version of the neural network, information is borne by graphical codewords (cliques) that use a fraction of the network available resources. These codewords can have different sizes that carry variable length information. We have examined this concept and computed the capacity limits on erasure correction as a function of error rate. These limits are compared with simulation results that are obtained from different experiment setups. We have finally studied the network under the formalism of information theory and established a connection between compressed sensing and the proposed network. 2013-06-26 ENG PhD thesis |
collection |
NDLTD |
language |
ENG |
sources |
NDLTD |
topic |
[MATH:MATH_IT] Mathematics/Information Theory [MATH:MATH_IT] Mathématiques/Théorie de l'information et codage [INFO:INFO_IT] Computer Science/Information Theory [INFO:INFO_IT] Informatique/Théorie de l'information Neural Networks Neural Coding Distributed Coding Compressed Sensing Parsimony |
spellingShingle |
[MATH:MATH_IT] Mathematics/Information Theory [MATH:MATH_IT] Mathématiques/Théorie de l'information et codage [INFO:INFO_IT] Computer Science/Information Theory [INFO:INFO_IT] Informatique/Théorie de l'information Neural Networks Neural Coding Distributed Coding Compressed Sensing Parsimony KAMARY ALIABADI, Behrooz Réseaux de neurones et acquisition de l'information parcimonieuse |
description |
This thesis studies a neural network inspired by human neocortex. An extension of the recurrent and binary network proposed by Gripon and Berrou is given to store sparse messages. In this new version of the neural network, information is borne by graphical codewords (cliques) that use a fraction of the network available resources. These codewords can have different sizes that carry variable length information. We have examined this concept and computed the capacity limits on erasure correction as a function of error rate. These limits are compared with simulation results that are obtained from different experiment setups. We have finally studied the network under the formalism of information theory and established a connection between compressed sensing and the proposed network. |
author |
KAMARY ALIABADI, Behrooz |
author_facet |
KAMARY ALIABADI, Behrooz |
author_sort |
KAMARY ALIABADI, Behrooz |
title |
Réseaux de neurones et acquisition de l'information parcimonieuse |
title_short |
Réseaux de neurones et acquisition de l'information parcimonieuse |
title_full |
Réseaux de neurones et acquisition de l'information parcimonieuse |
title_fullStr |
Réseaux de neurones et acquisition de l'information parcimonieuse |
title_full_unstemmed |
Réseaux de neurones et acquisition de l'information parcimonieuse |
title_sort |
réseaux de neurones et acquisition de l'information parcimonieuse |
publishDate |
2013 |
url |
http://tel.archives-ouvertes.fr/tel-00962603 http://tel.archives-ouvertes.fr/docs/00/96/26/03/PDF/2013telb0278_Kamary_Aliabadi_Behrooz.pdf |
work_keys_str_mv |
AT kamaryaliabadibehrooz reseauxdeneuronesetacquisitiondelinformationparcimonieuse |
_version_ |
1716654713151160320 |