Reconstruction en grandes dimensions
Dans cette thèse, nous cherchons à reconstruire une approximation d'une variété connue seulement à partir d'un nuage de points de grande dimension l'échantillonnant. Nous nous efforçons de trouver des méthodes de reconstructions efficaces et produisant des approximations ayant la même...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université de Grenoble
2013
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00947303 http://tel.archives-ouvertes.fr/docs/00/94/73/03/PDF/these-salinas.pdf |
Summary: | Dans cette thèse, nous cherchons à reconstruire une approximation d'une variété connue seulement à partir d'un nuage de points de grande dimension l'échantillonnant. Nous nous efforçons de trouver des méthodes de reconstructions efficaces et produisant des approximations ayant la même topologie que la variété échantillonnée. Une attention particulière est consacrée aux flag-complexes et particulièrement aux complexes de Rips. Nous montrons que le complexe de Rips capture la topologie d'une variété échantillonnée en supposant de bonnes conditions d'échantillonnage. En tirant avantage de la compacité des flags-complexes qui peuvent être représentés de manière compacte avec un graphe, nous présentons une structure de données appelée squelette/bloqueurs pour complexes simpliciaux. Nous étudions ensuite deux opérations de simplifications, la contraction d'arête et le collapse simplicial, qui s'avèrent utiles pour réduire un complexe simplicial sans en changer sa topologie. |
---|