Démélange non-linéaire d'images hyperspectrales

Le démélange spectral est un des sujets majeurs de l'analyse d'images hyperspectrales. Ce problème consiste à identifier les composants macroscopiques présents dans une image hyperspectrale et à quantifier les proportions (ou abondances) de ces matériaux dans tous les pixels de l'imag...

Full description

Bibliographic Details
Main Author: Altmann, Yoann
Language:ENG
Published: Institut National Polytechnique de Toulouse - INPT 2013
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00945513
http://tel.archives-ouvertes.fr/docs/00/94/55/13/PDF/Manuscrit_these_final_ALTMANN.pdf
Description
Summary:Le démélange spectral est un des sujets majeurs de l'analyse d'images hyperspectrales. Ce problème consiste à identifier les composants macroscopiques présents dans une image hyperspectrale et à quantifier les proportions (ou abondances) de ces matériaux dans tous les pixels de l'image. La plupart des algorithmes de démélange suppose un modèle de mélange linéaire qui est souvent considéré comme une approximation au premier ordre du mélange réel. Cependant, le modèle linéaire peut ne pas être adapté pour certaines images associées par exemple à des scènes engendrant des trajets multiples (forêts, zones urbaines) et des modèles non-linéaires plus complexes doivent alors être utilisés pour analyser de telles images. Le but de cette thèse est d'étudier de nouveaux modèles de mélange non-linéaires et de proposer des algorithmes associés pour l'analyse d'images hyperspectrales. Dans un premier temps, un modèle paramétrique post-non-linéaire est étudié et des algorithmes d'estimation basés sur ce modèle sont proposés. Les connaissances a priori disponibles sur les signatures spectrales des composants purs, sur les abondances et les paramètres de la non-linéarité sont exploitées à l'aide d'une approche bayesienne. Le second modèle étudié dans cette thèse est basé sur l'approximation de la variété non-linéaire contenant les données observées à l'aide de processus gaussiens. L'algorithme de démélange associé permet d'estimer la relation non-linéaire entre les abondances des matériaux et les pixels observés sans introduire explicitement les signatures spectrales des composants dans le modèle de mélange. Ces signatures spectrales sont estimées dans un second temps par prédiction à base de processus gaussiens. La prise en compte d'effets non-linéaires dans les images hyperspectrales nécessite souvent des stratégies de démélange plus complexes que celles basées sur un modèle linéaire. Comme le modèle linéaire est souvent suffisant pour approcher la plupart des mélanges réels, il est intéressant de pouvoir détecter les pixels ou les régions de l'image où ce modèle linéaire est approprié. On pourra alors, après cette détection, appliquer les algorithmes de démélange non-linéaires aux pixels nécessitant réellement l'utilisation de modèles de mélange non-linéaires. La dernière partie de ce manuscrit se concentre sur l'étude de détecteurs de non-linéarités basés sur des modèles linéaires et non-linéaires pour l'analyse d'images hyperspectrales. Les méthodes de démélange non-linéaires proposées permettent d'améliorer la caractérisation des images hyperspectrales par rapport au méthodes basées sur un modèle linéaire. Cette amélioration se traduit en particulier par une meilleure erreur de reconstruction des données. De plus, ces méthodes permettent de meilleures estimations des signatures spectrales et des abondances quand les pixels résultent de mélanges non-linéaires. Les résultats de simulations effectuées sur des données synthétiques et réelles montrent l'intérêt d'utiliser des méthodes de détection de non-linéarités pour l'analyse d'images hyperspectrales. En particulier, ces détecteurs peuvent permettre d'identifier des composants très peu représentés et de localiser des régions où les effets non-linéaires sont non-négligeables (ombres, reliefs,...). Enfin, la considération de corrélations spatiales dans les images hyperspectrales peut améliorer les performances des algorithmes de démélange non-linéaires et des détecteurs de non-linéarités.