Analysis and Visualisation of Edge Entanglement in Multiplex Networks

When it comes to comprehension of complex phenomena, humans need to understand what interactions lie within them.These interactions are often captured with complex networks. However, the interaction pluralism is often shallowed by traditional network models. We propose a new way to look at these phe...

Full description

Bibliographic Details
Main Author: Renoust, Benjamin
Language:FRE
Published: Université Sciences et Technologies - Bordeaux I 2013
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00942358
http://tel.archives-ouvertes.fr/docs/00/94/23/58/PDF/RENOUST_BENJAMIN_2013.pdf
Description
Summary:When it comes to comprehension of complex phenomena, humans need to understand what interactions lie within them.These interactions are often captured with complex networks. However, the interaction pluralism is often shallowed by traditional network models. We propose a new way to look at these phenomena through the lens of multiplex networks, in which catalysts are drivers of the interaction through substrates. To study the entanglement of a multiplex network is to study how edges intertwine, in other words, how catalysts interact. Our entanglement analysis results in a full set of new objects which completes traditional network approaches: the entanglement homogeneity and intensity of the multiplex network, and the catalyst interaction network, with for each catalyst, an entanglement index. These objects are very suitable for embedment in a visual analytics framework, to enable comprehension of a complex structure. We thus propose of visual setting with coordinated multiple views. We take advantage of mental mapping and visual linking to present simultaneous information of a multiplex network at three different levels of abstraction. We complete brushing and linking with a leapfrog interaction that mimics the back-and-forth process involved in users' comprehension. The method is validated and enriched through multiple applications including assessing group cohesion in document collections, and identification of particular associations in social networks.