Modélisation en vue de l'intégration d'un système audio de micro puissance comprenant un haut-parleur MEMS et son amplificateur

Ce manuscrit de thèse propose l'optimisation de l'ensemble de la chaîne de reproduction sonore dans un système embarqué. Le premier axe de recherche introduit les notions générales concernant les systèmes audio embarqués nécessaires à la bonne compréhension du contexte de la recherche. Le...

Full description

Bibliographic Details
Main Author: Sturtzer, Eric
Language:FRE
Published: INSA de Lyon 2013
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00940463
http://tel.archives-ouvertes.fr/docs/00/94/04/63/PDF/these.pdf
Description
Summary:Ce manuscrit de thèse propose l'optimisation de l'ensemble de la chaîne de reproduction sonore dans un système embarqué. Le premier axe de recherche introduit les notions générales concernant les systèmes audio embarqués nécessaires à la bonne compréhension du contexte de la recherche. Le principe de conversion de l'ensemble de la chaine est présenté afin de comprendre les différentes étapes qui composent un système audio. Un état de l'art présente les différents types de haut-parleurs ainsi que l'électronique associé les plus couramment utilisées dans les systèmes embarqués. Le second axe de recherche propose une approche globale : une modélisation électrique du haut-parleur (tenant compte d'un nombre optimal de paramètres) permet à un électronicien de mieux appréhender les phénomènes non-linéaires du haut-parleur qui dégradent majoritairement la qualité audio. Il en résulte un modèle viable qui permet d'évaluer la non-linéarité intrinsèque du haut-parleur et d'en connaitre sa cause. Les résultats des simulations montrent que le taux de distorsion harmonique intrinsèque au haut-parleur est supérieur à celui généré par un amplificateur. Le troisième axe de recherche met en avant l'impact du contrôle du transducteur. L'objectif étant de savoir s'il existe une différence, du point de vue de la qualité audio, entre la commande asservie par une tension ou par un courant, d'un micro-haut-parleur électrodynamique. Pour ce type de transducteur et à ce niveau de la modélisation, le contrôle en tension est équivalent à contrôler directement le haut-parleur en courant. Néanmoins, une solution alternative (ne dégradant pas davantage la qualité audio du signal) pourrait être de contrôler le micro-haut-parleur en courant. Le quatrième axe de recherche propose d'adapter les spécifications des amplificateurs audio aux performances des micro-haut-parleurs. Une étude globale (énergétique) démontre qu'un des facteurs clés pour améliorer l'efficacité énergétique du côté de l'amplificateur audio est la minimalisation de la consommation statique en courant, en maximalisant le rendement à puissance nominale. Pour les autres spécifications, l'approche globale se base sur l'étude de l'impact de la spécification d'un amplificateur sur la partie acoustique. Cela nous a par exemple permis de réduire la contrainte en bruit de 300%. Le dernier axe de recherche s'articule autour d'un nouveau type de transducteur : un micro-haut-parleur en technologie MEMS. La caractérisation électroacoustique présente l'amélioration en terme de qualité audio (moins de 0,016% de taux de distorsion harmonique) et de plage de fréquence utile allant de 200 Hz à 20 kHz le tout pour un niveau sonore moyen de 80dB (10cm). La combinaison de tous les efforts présente un réel saut technologique. Enfin, la démarche globale d'optimisation de la partie électrique a été appliquée aux performances du MEMS dans la dernière section, ce qui a notamment permis de réduire la contrainte en bruit de 500%.