Images des représentations galoisiennes
Dans cette thèse, on étudie les représentations 2-dimensionnelles continues du groupe de Galois absolu d'une clôture algébrique fixée de Q sur les corps finis qui sont modulaires et leurs images. Ce manuscrit se compose de deux parties.Dans la première partie, on étudie un problème local-global...
Main Author: | |
---|---|
Language: | ENG |
Published: |
Université Sciences et Technologies - Bordeaux I
2013
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00903800 http://tel.archives-ouvertes.fr/docs/00/90/38/00/PDF/ANNI_SAMUELE_2013_CORR.pdf |
Summary: | Dans cette thèse, on étudie les représentations 2-dimensionnelles continues du groupe de Galois absolu d'une clôture algébrique fixée de Q sur les corps finis qui sont modulaires et leurs images. Ce manuscrit se compose de deux parties.Dans la première partie, on étudie un problème local-global pour les courbes elliptiques sur les corps de nombres. Soit E une courbe elliptique sur un corps de nombres K, et soit l un nombre premier. Si E admet une l-isogénie localement sur un ensemble de nombres premiers de densité 1 alors est-ce que E admet une l-isogénie sur K ? L'étude de la repréesentation galoisienne associéee à la l-torsion de E est l'ingrédient essentiel utilisé pour résoudre ce problème. On caractérise complètement les cas où le principe local-global n'est pas vérifié, et on obtient une borne supérieure pour les valeurs possibles de l pour lesquelles ce cas peut se produire.La deuxième partie a un but algorithmique : donner un algorithme pour calculer les images des représentations galoisiennes 2-dimensionnelles sur les corps finis attachées aux formes modulaires. L'un des résultats principaux est que l'algorithme n'utilise que des opérateurs de Hecke jusqu'à la borne de Sturm au niveau donné n dans presque tous les cas. En outre, presque tous les calculs sont effectués en caractéristique positive. On étudie la description locale de la représentation aux nombres premiers divisant le niveau et la caractéristique. En particulier, on obtient une caractérisation précise des formes propres dans l'espace des formes anciennes en caractéristique positive.On étudie aussi le conducteur de la tordue d'une représentation par un caractère et les coefficients de la forme de niveau et poids minimaux associée. L'algorithme est conçu à partir des résultats de Dickson, Khare-Wintenberger et Faber sur la classification, à conjugaison près, des sous-groupes finis de $\PGL_2(\overline{\F}_\ell)$. On caractérise chaque cas en donnant une description et des algorithmes pour le vérifier. En particulier, on donne une nouvelle approche pour les représentations irréductibles avec image projective isomorphe soit au groupe symétrique sur 4 éléments ou au groupe alterné sur 4 ou 5 éléments. |
---|