Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications

Nowadays with the world oil price soaring, the energy issue is becoming a significant topic and the possibility of harvesting ambient energy receiving much attention. In this dissertation, the main topic surrounds improving the piezoelectric energy harvesting device in several aspects and the final...

Full description

Bibliographic Details
Main Author: Chen, Yu-Yin
Language:English
Published: École normale supérieure de Cachan - ENS Cachan 2013
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00847336
http://tel.archives-ouvertes.fr/docs/00/84/73/36/PDF/Chen2013.pdf
id ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-00847336
record_format oai_dc
spelling ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-008473362014-10-09T03:26:38Z http://tel.archives-ouvertes.fr/tel-00847336 2013DENS0004 http://tel.archives-ouvertes.fr/docs/00/84/73/36/PDF/Chen2013.pdf Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications Chen, Yu-Yin [SPI:OTHER] Engineering Sciences/Other [SPI:OTHER] Sciences de l'ingénieur/Autre Energy harvesting Piezoelectric transducer Structural dumping Nowadays with the world oil price soaring, the energy issue is becoming a significant topic and the possibility of harvesting ambient energy receiving much attention. In this dissertation, the main topic surrounds improving the piezoelectric energy harvesting device in several aspects and the final objective is to integrate it with low power consumption device, for example a wireless sensor network (WSN) node to extend the battery lifetime and further supply the energy to device directly. Based on the high mechanical quality factor of the structure, the output power of the piezoelectric energy harvesting device will decrease rapidly when the exciting frequency is out of the resonant frequency range. The tunable resonant frequency technique is proposed to broaden the resonant frequency range and increase the output power effectively. Then this technique is successfully combined with a WSN module to transmit the RF signal. To broaden resonant frequency another method is proposed, based on a bistable vibrating cantilever beam and a switching-type interface circuit (SSHI). It's a new and interesting concept to combine these two techniques. The magnets are used to make mechanical behavior non-linear and increase the output power at non-resonance. The SSHI technique through zero-velocity detection can work well when system is driven in non-linear system. The experimental and simulation results through work-cycles discussion show good performance of combining these two techniques. In the interface circuit design, synchronized switching harvesting on an inductor (SSHI) have been verified a successful technique to increase output power in low-coupling system. In order to make use of the SSHI technique in the real application, the velocity control self-powered SSHI (V-SSHI) system is proposed. Unlike the conventional peak detector technique, the zero-velocity detection is used to make the switching time more accurate. The energy flow is separated into three paths to construct the V-SSHI and the experimental results show good performance. When the system is not low-coupled, the SSHI technique will damp vibration.This technique is called SSDI (synchronized switching damping on an inductor). Based on the self-powered technique and zero-velocity detection used in the V-SSHI, these techniques are further applied in structural damping to construct a self-powered SSDI (SP-SSDI). The major advantage is that it is only necessary to sacrifice a small amount of damping performance to make the system fully self-powered. The theoretical analysis and experiment results of time domain comparison and frequency response testing show the limit and performance of the SP-SSDI technique. The SP-SSDI system is a like a feedback loop system and when the displacement is over the limit the SP-SSDI will effectively damp the vibration. 2013-01-28 eng PhD thesis École normale supérieure de Cachan - ENS Cachan
collection NDLTD
language English
sources NDLTD
topic [SPI:OTHER] Engineering Sciences/Other
[SPI:OTHER] Sciences de l'ingénieur/Autre
Energy harvesting
Piezoelectric transducer
Structural dumping
spellingShingle [SPI:OTHER] Engineering Sciences/Other
[SPI:OTHER] Sciences de l'ingénieur/Autre
Energy harvesting
Piezoelectric transducer
Structural dumping
Chen, Yu-Yin
Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications
description Nowadays with the world oil price soaring, the energy issue is becoming a significant topic and the possibility of harvesting ambient energy receiving much attention. In this dissertation, the main topic surrounds improving the piezoelectric energy harvesting device in several aspects and the final objective is to integrate it with low power consumption device, for example a wireless sensor network (WSN) node to extend the battery lifetime and further supply the energy to device directly. Based on the high mechanical quality factor of the structure, the output power of the piezoelectric energy harvesting device will decrease rapidly when the exciting frequency is out of the resonant frequency range. The tunable resonant frequency technique is proposed to broaden the resonant frequency range and increase the output power effectively. Then this technique is successfully combined with a WSN module to transmit the RF signal. To broaden resonant frequency another method is proposed, based on a bistable vibrating cantilever beam and a switching-type interface circuit (SSHI). It's a new and interesting concept to combine these two techniques. The magnets are used to make mechanical behavior non-linear and increase the output power at non-resonance. The SSHI technique through zero-velocity detection can work well when system is driven in non-linear system. The experimental and simulation results through work-cycles discussion show good performance of combining these two techniques. In the interface circuit design, synchronized switching harvesting on an inductor (SSHI) have been verified a successful technique to increase output power in low-coupling system. In order to make use of the SSHI technique in the real application, the velocity control self-powered SSHI (V-SSHI) system is proposed. Unlike the conventional peak detector technique, the zero-velocity detection is used to make the switching time more accurate. The energy flow is separated into three paths to construct the V-SSHI and the experimental results show good performance. When the system is not low-coupled, the SSHI technique will damp vibration.This technique is called SSDI (synchronized switching damping on an inductor). Based on the self-powered technique and zero-velocity detection used in the V-SSHI, these techniques are further applied in structural damping to construct a self-powered SSDI (SP-SSDI). The major advantage is that it is only necessary to sacrifice a small amount of damping performance to make the system fully self-powered. The theoretical analysis and experiment results of time domain comparison and frequency response testing show the limit and performance of the SP-SSDI technique. The SP-SSDI system is a like a feedback loop system and when the displacement is over the limit the SP-SSDI will effectively damp the vibration.
author Chen, Yu-Yin
author_facet Chen, Yu-Yin
author_sort Chen, Yu-Yin
title Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications
title_short Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications
title_full Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications
title_fullStr Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications
title_full_unstemmed Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications
title_sort piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications
publisher École normale supérieure de Cachan - ENS Cachan
publishDate 2013
url http://tel.archives-ouvertes.fr/tel-00847336
http://tel.archives-ouvertes.fr/docs/00/84/73/36/PDF/Chen2013.pdf
work_keys_str_mv AT chenyuyin piezoelectricpowertransducersanditsinterfacingcircuitryonenergyharvestingandstructuraldampingapplications
_version_ 1716716224841252864