Etudes de la convergence d'un calcul Monte Carlo de criticité : utilisation d'un calcul déterministe et détection automatisée du transitoire

Les calculs Monte Carlo en neutronique-criticité permettent d'estimer le coefficient de multiplication effectif ainsi que des grandeurs locales comme le flux ou les taux de réaction. Certaines configurations présentant de faibles couplages neutroniques (modélisation de cœurs complets, prise en...

Full description

Bibliographic Details
Main Author: Jinaphanh, Alexis
Language:fra
Published: Université de Grenoble 2012
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00846504
http://tel.archives-ouvertes.fr/docs/00/84/65/04/PDF/32931_JINAPHANH_2012_archivage.pdf
Description
Summary:Les calculs Monte Carlo en neutronique-criticité permettent d'estimer le coefficient de multiplication effectif ainsi que des grandeurs locales comme le flux ou les taux de réaction. Certaines configurations présentant de faibles couplages neutroniques (modélisation de cœurs complets, prise en compte de profils d'irradiations, ...) peuvent conduire à de mauvaises estimations du kef f ou des flux locaux. L'objet de cette thèse est de contribuer à rendre plus robuste l'algorithme Monte Carlo utilisé et améliorer la détection de la convergence. L'amélioration du calcul envisagée passe par l'utilisation, lors du calcul Monte Carlo, d'un flux adjoint obtenu par un pré-calcul détermi- niste réalisé en amont. Ce flux adjoint est ensuite utilisé pour déterminer le positionnement de la première génération, modifier la sélection des sites de naissance, et modifier la marche aléatoire par des stratégies de splitting et de roulette russe. Une méthode de détection automatique du transitoire a été développée. Elle repose sur la modélisation des séries de sortie par un processus auto régressif d'ordre 1 et un test statistique dont la variable de décision est la moyenne du pont de Student. Cette méthode a été appli- quée au kef f et à l'entropie de Shannon. Elle est suffisamment générale pour être utilisée sur n'importe quelle série issue d'un calcul Monte Carlo itératif. Les méthodes développées dans cette thèse ont été testées sur plusieurs cas simplifiés présentant des difficultés de convergence neutroniques.