Gestion de l'activité et de la consommation dans les architectures multi-coeurs massivement parallèles

Les variabilités du processus de fabrication des technologies avancées (typ. < 32nm) sont de plus en plus difficile à maîtriser. Elles impactent plus sévèrement la fréquence de fonctionnement et la consommation d'énergie, et induisent de plus en plus de défaillances dans le circuit. Ceci est...

Full description

Bibliographic Details
Main Author: Bizot, Gilles
Language:fra
Published: Université de Grenoble 2012
Subjects:
NoC
Online Access:http://tel.archives-ouvertes.fr/tel-00838435
http://tel.archives-ouvertes.fr/docs/00/84/91/47/PDF/19301_BIZOT_2012_archivage.pdf
Description
Summary:Les variabilités du processus de fabrication des technologies avancées (typ. < 32nm) sont de plus en plus difficile à maîtriser. Elles impactent plus sévèrement la fréquence de fonctionnement et la consommation d'énergie, et induisent de plus en plus de défaillances dans le circuit. Ceci est particulièrement vrai pour les MPSoCs, où le nombre de coeurs de calculs est très important. Les besoins (performances, fonctionnalités, faible consommation, tolérance aux fautes) ne cessent de croître et les caractéristiques hétérogènes (fréquence, énergie, défaillances) rendent difficile la mise en oeuvre de systèmes répondant à ces exigences. Ces travaux s'inscrivent dans l'optique de traiter ces problèmes pour des systèmes MPSoCs massivement parallèles, basés sur une topologie en maille 2D. Cette thèse propose une méthodologie automatisée qui permet le placement et l'ordonnancement d'applications dans les systèmes ciblés. Les aspects variabilité, consommation et performance sont pris en compte. D'autre part, cette thèse propose une technique de placement adaptatif tolérant aux fautes basée sur une stratégie de recouvrement des erreurs. Cette stratégie permet de garantir la terminaison de l'application en présence de défaillances, sans avoir recours à la prise de " check-points ". Cette technique est complété par des algorithmes adaptatifs distribués, prenant en compte la variabilité et la consommation d'énergie.