Synthèse de nanolubrifiants à base de carbones fluorés

Pour répondre aux problématiques d'usure précoce des pièces mécaniques causée par des pressions et températures élevées d'utilisation, des nanolubrifiants constitués de nanocarbones fluorés, connus pour leurs faibles coefficients de frottement et haute stabilité thermique ont été synthétis...

Full description

Bibliographic Details
Main Author: Disa, Elodie
Language:fra
Published: Université Blaise Pascal - Clermont-Ferrand II 2012
Subjects:
MEB
MET
AFM
Online Access:http://tel.archives-ouvertes.fr/tel-00824130
http://tel.archives-ouvertes.fr/docs/00/82/41/30/PDF/DISA-2012CLF22290.pdf.pdf
Description
Summary:Pour répondre aux problématiques d'usure précoce des pièces mécaniques causée par des pressions et températures élevées d'utilisation, des nanolubrifiants constitués de nanocarbones fluorés, connus pour leurs faibles coefficients de frottement et haute stabilité thermique ont été synthétisés. Pour améliorer ces propriétés, des précurseurs nanocarbonés de dimensionnalités différentes, et des procédés de synthèse gaz-solide variés ont été employés. Ainsi, une structure fermée comme les nanofibres de carbone NFCs (1D, tubulaire), ouverte comme le mélange nanodisques / nanocônes de carbone NDCs (majoritairement 2D, discotique) et intermédiaire avec les noirs de carbone graphitisés NCGs (0D, sphérique) ont été fluorés, d'une part avec le fluor moléculaire gazeux et d'autre part avec le fluor atomique produit par décomposition thermique d'un agent solide. Les mécanismes de fluoration / défluoration ont été proposés à l'aide de différentes techniques de caractérisation complémentaires (RMN du solide, MEB, MET, AFM, DRX) pour l'ensemble des matrices étudiées. Des matériaux présentant un gain de stabilité thermique de plusieurs dizaines de degrés comparativement aux matériaux fluorés de la littérature ont été élaborés, et une nouvelle méthode de synthèse dite " fluoration flash " a été mise au point pour étendre encore cette tenue en température. Les bonnes propriétés tribologiques de ces matériaux ont également été démontrées, notamment à 160°C et ceci quel que soit le mode de fluoration. Par la suite, des vernis à base de résines siliconées et chargés en nanofibres de carbone fluorées ont été formulés. Le revêtement composite présente une stabilité thermique supérieure à 400°C comme démontré par l'étude de son mécanisme de dégradation en température, notamment par couplage ATG-FTIR. D'un point de vue tribologique, les coefficients de frottement mesurés à température ambiante et 160°C sont inférieurs à 0,1 et les tribofilms obtenus ont été caractérisés par analyse MEB et EDX.