Architectures massivement parallèles et vision artificielle bas-niveau
Ce travail de thèse étudie l'apport à la vision bas-niveau des architectures de calcul massivement parallèles. Nous reprenons l'évolution récente de l'architecture des ordinateurs, en mettant en avant les solutions massivement parallèles qui se sont imposées récemment, les GPU. L'...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université Paris-Nord - Paris XIII
2013
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00820700 http://tel.archives-ouvertes.fr/docs/00/82/07/00/PDF/phdAP.pdf |
Summary: | Ce travail de thèse étudie l'apport à la vision bas-niveau des architectures de calcul massivement parallèles. Nous reprenons l'évolution récente de l'architecture des ordinateurs, en mettant en avant les solutions massivement parallèles qui se sont imposées récemment, les GPU. L'exploitation des potentialités de ces architectures impose une modification des méthodes de programmation. Nous montrons qu'il est possible d'utiliser un nombre restreint de schémas ("patterns") de calcul pour résoudre un grand nombre de problématiques de vision bas niveau. Nous présentons ensuite un nouveau modèle pour estimer la complexité de ces solutions. La suite du travail consiste à appliquer ces modèles de programmation à des problématiques de vision bas-niveau. Nous abordons d'abord le calcul du flot optique, qui est le champ de déplacement d'une image à une autre, et dont l'estimation est une brique de base de très nombreuses applications en traitement vidéo. Nous présentons un code sur GPU, nommé FOLKI qui permet d'atteindre une très bonne qualité de résultats sur séquences réelles pour un temps de calcul bien plus faible que les solutions concurrentes actuelles. Une application importante de ces travaux concerne la vélocimétrie par imagerie de particules dans le domaine de la mécanique des fluides expérimentale. La seconde problématique abordée est la super-résolution (SR). Nous proposons d'abord un algorithme très rapide de SR utilisant le flot optique FOLKI pour recaler les images. Ensuite différentes solutions à coût de calcul croissant sont développées, qui permettent une amélioration de précision et de robustesse. Nous présentons des résultats très originaux de SR sur des séquences affectées de mouvement complexes, comme des séquences de piétons ou des séquences aériennes de véhicules en mouvement. Enfin le dernier chapitre aborde rapidement des extensions en cours de nos travaux à des contextes de mesure 3D, dans des domaines comme la physique expérimentale ou la robotique. |
---|