Extraction de Connaissances pour la Modelisation tri-dimensionnelle de l'Interactome Structural
L'étude structurale de l'interactome cellulaire peut conduire à des découvertes intéressantes sur les bases moléculaires de certaines pathologies. La modélisation par homologie et l'amarrage de protéines ("protein docking") sont deux approches informatiques pour modéliser la...
Main Author: | |
---|---|
Language: | ENG |
Published: |
Université de Lorraine
2012
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00762444 http://tel.archives-ouvertes.fr/docs/00/76/24/44/PDF/anisah_ghoorah_thesis_22nov2012.pdf |
Summary: | L'étude structurale de l'interactome cellulaire peut conduire à des découvertes intéressantes sur les bases moléculaires de certaines pathologies. La modélisation par homologie et l'amarrage de protéines ("protein docking") sont deux approches informatiques pour modéliser la structure tri-dimensionnelle (3D) d'une interaction protéine-protéine (PPI). Des études précédentes ont montré que ces deux approches donnent de meilleurs résultats quand des données expérimentales sur les PPIs sont prises en compte. Cependant, les données PPI ne sont souvent pas disponibles sous une forme facilement accessible, et donc ne peuvent pas être re-utilisées par les algorithmes de prédiction. Cette thèse présente une approche systématique fondée sur l'extraction de connaissances pour représenter et manipuler les données PPI disponibles afin de faciliter l'analyse structurale de l'interactome et d'améliorer les algorithmes de prédiction par la prise en compte des données PPI. Les contributions majeures de cette thèse sont de : (1) décrire la conception et la mise en oeuvre d'une base de données intégrée KBDOCK qui regroupe toutes les interactions structurales domaine-domaine (DDI); (2) présenter une nouvelle méthode de classification des DDIs par rapport à leur site de liaison dans l'espace 3D et introduit la notion de site de liaison de famille de domaines protéiques ("domain family binding sites" ou DFBS); (3) proposer une classification structurale (inspirée du système CATH) des DFBSs et présenter une étude étendue sur les régularités d'appariement entre DFBSs en terme de structure secondaire; (4) introduire une approche systématique basée sur le raisonnement à partir de cas pour modéliser les structures 3D des complexes protéiques à partir des DDIs connus. Une interface web (http://kbdock.loria.fr) a été développée pour rendre accessible le système KBDOCK. Le système KBDOCK couvre plus de 2,700 hetero DDIs non-redondantes correspondant à 1,439 DFBSs localisés sur 947 domaines Pfam distincts. KBDOCK a permis de réaliser plusieurs études étendues. Par exemple, KBDOCK a été utilisé pour montrer que: (1) après de 70% de familles de domaines protéiques n'ont qu'un seul DFBS et les autres familles en ont un petit nombre seulement, ce qui suggère que les DDIs re-utilisent souvent les mêmes sites de liaison; (2) plus de 80% de DFBSs interagissent avec une seule famille de domaines protéiques et les autres DFBSs interagissent avec un petit nombre de familles, ce qui indique que la plupart des DFBSs sont principalement monogames dans leur interactions avec les autres domaines protéiques; (3) les DFBSs impliqués dans des interactions présentent des régularités en terme de structure secondaire, ce qui pourrait servir comme un descripteur complémentaire dans la prédiction d'interaction; (4) lorsque les domaines re-utilisent leur DFBS, le docking orienté vient améliorer les prédictions. Ainsi, KBDOCK constitue une ressource unifiée qui permet d'enrichir les connaissances sur l'interactome structural. |
---|