Contributions à la statistique des processus : estimation, prédiction et extrêmes

Ce mémoire d'habilitation traite de la statistique des processus à temps discret faiblement dépendants. Une première partie présente des résultats asymptotiques d'estimation pour les paramètres de modèles affines généraux. La méthode étudiée est la maximisation du critère de quasi-vraisemb...

Full description

Bibliographic Details
Main Author: Wintenberger, Olivier
Language:FRE
Published: Université Paris Dauphine - Paris IX 2012
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00757756
http://tel.archives-ouvertes.fr/docs/00/75/77/56/PDF/hdrowtel.pdf
http://tel.archives-ouvertes.fr/docs/00/75/77/56/ANNEX/HDR2.pdf
Description
Summary:Ce mémoire d'habilitation traite de la statistique des processus à temps discret faiblement dépendants. Une première partie présente des résultats asymptotiques d'estimation pour les paramètres de modèles affines généraux. La méthode étudiée est la maximisation du critère de quasi-vraisemblance. Afin de traiter de possibles ruptures de stationnarité, nous pénalisons ce critère par le nombre de ruptures. Pour les modèles à volatilité comme le modèle EGARCH, cette procédure est instable et nous proposons de contraindre le critère au domaine dit d'inversibilité continue. Nous étudions le problème de la prédiction de processus faiblement dépendants dans une seconde partie. Les résultats obtenus sont des inégalités d'oracle non asymptotiques nécessitant l'étude préalable des propriétés de concentration gaussiennes de lois faiblement dépendantes. Pour ce faire nous utilisons une notion de transport faible et de nouvelles inégalités dites de transport conditionnel. Enfin, le comportement des extrêmes en présence de dépendance fait l'objet de la troisième partie. Nous introduisons un indice de {\it cluster} qui caractérise les lois limites $\alpha$-stables dans le théorème de la limite centrale et les grandes déviations des sommes partielles à variation régulière. Nous traitons des exemples de processus à queues épaisses tels que les solutions des équations récurrentes stochastiques linéaires et le modèle GARCH. Nous appliquons ces résultats pour caractériser asymptotiquement les erreurs d'estimation des auto-covariances de processus à queues épaisses.