Analyse par ondelettes du mouvement multifractionnaire stable linéaire
Le mouvement brownien fractionnaire (mbf) constitue un important outil de modélisation utilisé dans plusieurs domaines (biologie, économie, finance, géologie, hydrologie, télécommunications, etc.) ; toutefois, ce modèle ne parvient pas toujours à donner une description suffisamment fidèle de la réal...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université des Sciences et Technologie de Lille - Lille I
2012
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00753510 http://tel.archives-ouvertes.fr/docs/00/75/35/10/PDF/these.pdf |
Summary: | Le mouvement brownien fractionnaire (mbf) constitue un important outil de modélisation utilisé dans plusieurs domaines (biologie, économie, finance, géologie, hydrologie, télécommunications, etc.) ; toutefois, ce modèle ne parvient pas toujours à donner une description suffisamment fidèle de la réalité, à cause, entre autres, des deux limitations suivantes : d'une part le mbf est un processus gaussien, et d'autre part, sa rugosité locale (mesurée par un exposant de Hölder) reste la même tout le long de sa trajectoire, puisque cette rugosité est partout égale au paramètre de Hurst H qui est une constante. En vue d'y remédier, S. Stoev et M.S. Taqqu (2004 et 2005) ont introduit le mouvement multifractionnaire stable linéaire (mmsl) ; ce processus stochastique strictement α-stable (StαS), désigné par {Y(t)}, est obtenu en remplaçant la mesure brownienne par une mesure StαS et le paramètre de Hurst H par une fonction H(.) dépendant de t. On se place systématiquement dans le cas où cette fonction est continue et à valeurs dans l'intervalle ouvert ]1/α,1[. Il convient aussi de noter que l'on a pour tout t, Y(t)=X(t,H(t)), où {X(u,v)} est le champ stochastique StαS, tel que pour tout v fixé, le processus {X(u,v)} est un mouvement fractionnaire stable linéaire. L'objectif de la thèse est de mener une étude approfondie du mmsl, au moyen de méthodes d'ondelettes ; elle consiste principalement en trois parties. (1) On détermine de fins modules de continuité, globaux et locaux de {Y(t)} ; cela repose essentiellement sur une nouvelle représentation de {X(u,v)}, sous la forme d'une série aléatoire, dont on montre la convergence presque sûre dans certains espaces de Hölder. (2) On introduit, via la base de Haar, une autre représentation de {X(u,v)} en série aléatoire ; cette dernière permet la mise en place d'une méthode de simulation efficace du mmsl, ainsi que de ses parties hautes et basses fréquences. (3) On construit des estimateurs par ondelettes du paramètre fonctionnel H(.) du mmsl, ainsi que de son paramètre de stabilité α. |
---|