Heavy metal ion sensors based on organic microcavity lasers
Monitoring of environmental pollutants present at low concentrations requires creation of miniature, low-cost, and highly sensitive detectors that are capable to specifically identify target substances. In this thesis, a detection approach based on refractive index sensing with polymer micro-lasers...
Main Author: | |
---|---|
Language: | ENG |
Published: |
École normale supérieure de Cachan - ENS Cachan
2011
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00744846 http://tel.archives-ouvertes.fr/docs/00/74/48/46/PDF/Lozenko2011.pdf |
Summary: | Monitoring of environmental pollutants present at low concentrations requires creation of miniature, low-cost, and highly sensitive detectors that are capable to specifically identify target substances. In this thesis, a detection approach based on refractive index sensing with polymer micro-lasers is proposed and its application to the detection of heavy metal pollutants in water (mercury - Hg2+, cadmium - Cd2+ and lead - Pb2+) is studied. The resonance frequencies of the microcavity are highly sensitive to the refractive indices of the resonator surrounding: the resonances shift by a small amount when the surface refractive index changes, resulting from the interaction of the mode evanescent field with the surrounding medium. This permits label-free detection by coating the resonator with a suitable recognition species. The originality of this work lies in the utilization of active microcavities, or microlasers, created of the dye-doped polymers. Active microcavities offer an enhanced signal/noise ratio as compared to the passive ones and very narrow resonance peaks even at moderate quality factors (Q ≥- 6000). The choice of polymers as an active medium is connected with a number of advantages they offer: as opposite to semiconductors, polymers can be easily functionalized, integrated in microfluidic circuits and are cheaper in processing. Moreover, the use of porous polymer matrices may allow accumulation of analyte ions inside the microcavity and thus enhance the sensitivity. Two possible applications of microlasers are investigated in the thesis: refractive index variation sensing with non-functionalized cavities and heavy metal ion detection with functionalized cavities. In the first case, the sensitivity values have been obtained, comparable with the reported in literature for planar passive microresonators. In the second case, the experimental proofs of specific detection of mercury ions in liquid are presented. The ways of sensitivity improvement are discussed and verified and a foundation is layed for the creation of integrated Lab-on-Chip microfluidic biochemical detector. |
---|