Vers la forme générale du théorème de Grothendieck-Riemann-Roch
On s'intéresse dans ce travail au théorème de Grothendieck-Riemann-Roch. Grothendieck et son école en ont démontré une forme très générale dans les années 60 tout en conjecturant l'existence d'une forme encore plus générale. Nous posons une conjecture intermédiaire entre les résultats...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université Paris-Diderot - Paris VII
2012
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00741782 http://tel.archives-ouvertes.fr/docs/00/74/17/82/PDF/theseDUMA.pdf |
Summary: | On s'intéresse dans ce travail au théorème de Grothendieck-Riemann-Roch. Grothendieck et son école en ont démontré une forme très générale dans les années 60 tout en conjecturant l'existence d'une forme encore plus générale. Nous posons une conjecture intermédiaire entre les résultats connus et les conjectures les plus générales de Grothendieck, puis nous la démontrons dans deux cas particuliers. Plus précisément on conjecture que le théorème de Grothendieck-Riemann-Roch est vrai pour un morphisme propre localement d'intersection complète entre deux schémas divisoriels d'égale caractéristique. On démontre des cas particuliers de cette conjecture, dans le cas de la caractéristique positive d'une part, dans le cas où les schémas sont supposés réguliers et tels que le polynôme $T^k-1$ y ait $k$ racines distinctes d'autre part. Le théorème de Grothendieck-Riemann-Roch étant équivalent au théorème d'Adams-Riemann-Roch modulo torsion, on démontre des résultats de type Adams-Riemann-Roch pour en déduire des résultats de type Grothendieck-Riemann-Roch. |
---|