Polymères en milieu aléatoire : influence d'un désordre corrélé sur le phénomène de localisation

Cette thèse porte sur l'étude de modèles de polymère en milieu aléatoire: on se concentre sur le cas d'un polymère dirigé en dimension d+1 qui interagit avec un défaut unidimensionnel. Les interactions sont possiblement non-homogènes, et sont représentées par des variables aléatoires. Une...

Full description

Bibliographic Details
Main Author: Berger, Quentin
Language:ENG
Published: Ecole normale supérieure de lyon - ENS LYON 2012
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00726494
http://tel.archives-ouvertes.fr/docs/00/72/64/94/PDF/BERGER_Quentin_2012_these.pdf
Description
Summary:Cette thèse porte sur l'étude de modèles de polymère en milieu aléatoire: on se concentre sur le cas d'un polymère dirigé en dimension d+1 qui interagit avec un défaut unidimensionnel. Les interactions sont possiblement non-homogènes, et sont représentées par des variables aléatoires. Une question importante est celle de l'influence du désordre sur le phénomène de localisation: on veut déterminer si la présence d'inhomogénéités modifie les propriétés critiques du système, et notamment les caractéristiques de la transition de phase (auquel cas le désodre est dit pertinent). En particulier, nous prouvons que dans le cas où le défaut est une marche aléatoire, le désordre est pertinent en dimension d≥3. Ensuite, nous étudions le modèle d'accrochage sur une ligne de défauts possédant des inhomogénéités corrélées spatialement. Il existe un critère non rigoureux (dû à Weinrib et Halperin), que l'on applique à notre modèle, et qui prédit si le désordre est pertinent ou non en fonction de l'exposant critique du système homogène, noté νpur, et de l'exposant de décroissance des corrélations. Si le désordre est gaussien et les corrélations sommables, nous montrons la validité du critère de Weinrib-Halperin: nous le prouvons dans la version hiérarchique du modèle, et aussi, de manière partielle, dans le cadre (standard) non-hiérarchique. Nous avons de plus obtenu un résultat surprenant: lorsque les corrélations sont suffisamment fortes, et en particulier si elles sont non-sommables (dans le cadre gaussien), il apparaît un régime où le désordre devient toujours pertinent, l'ordre de la transition de phase étant toujours plus grand que νpur. La prédiction de Weinrib-Halperin ne s'applique alors pas à notre modèle.