Mémoire longue, volatilité et gestion de portefeuille
Cette thèse porte sur l'étude de la mémoire longue de la volatilité des rendements d'actions. Dans une première partie, nous apportons une interprétation de la mémoire longue en termes de comportement d'agents grâce à un modèle de volatilité à mémoire longue dont les paramètres sont r...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université Claude Bernard - Lyon I
2009
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00657711 http://tel.archives-ouvertes.fr/docs/00/65/77/11/PDF/TH2009_Coulon_Jerome.pdf |
Summary: | Cette thèse porte sur l'étude de la mémoire longue de la volatilité des rendements d'actions. Dans une première partie, nous apportons une interprétation de la mémoire longue en termes de comportement d'agents grâce à un modèle de volatilité à mémoire longue dont les paramètres sont reliés aux comportements hétérogènes des agents pouvant être rationnels ou à rationalité limitée. Nous déterminons de manière théorique les conditions nécessaires à l'obtention de mémoire longue. Puis nous calibrons notre modèle à partir des séries de volatilité réalisée journalière d'actions américaines de moyennes et grandes capitalisations et observons le changement de comportement des agents entre la période précédant l'éclatement de la bulle internet et celle qui la suit. La deuxième partie est consacrée à la prise en compte de la mémoire longue en gestion de portefeuille. Nous commençons par proposer un modèle de choix de portefeuille à volatilité stochastique dans lequel la dynamique de la log-volatilité est caractérisée par un processus d'Ornstein-Uhlenbeck. Nous montrons que l'augmentation du niveau d'incertitude sur la volatilité future induit une révision du plan de consommation et d'investissement. Puis dans un deuxième modèle, nous introduisons la mémoire longue grâce au mouvement brownien fractionnaire. Cela a pour conséquence de transposer le système économique d'un cadre markovien à un cadre non-markovien. Nous fournissons donc une nouvelle méthode de résolution fondée sur la technique de Monte Carlo. Puis, nous montrons toute l'importance de modéliser correctement la volatilité et mettons en garde le gérant de portefeuille contre les erreurs de spécification de modèle. |
---|