Calcul de centralité et identification de structures de communautés dans les graphes de documents

Dans cette thèse, nous nous intéressons à la caractérisation de grandes collections de documents (en utilisant les liens entre ces derniers) afin de faciliter leur utilisation et leur exploitation par des humains ou par des outils informatiques. Dans un premier temps, nous avons abordé la problémati...

Full description

Bibliographic Details
Main Author: Chikhi, Nacim Fateh
Language:FRE
Published: Université Paul Sabatier - Toulouse III 2010
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00619177
http://tel.archives-ouvertes.fr/docs/00/61/91/77/PDF/These_Nacim_Chikhi_v8.0.pdf
Description
Summary:Dans cette thèse, nous nous intéressons à la caractérisation de grandes collections de documents (en utilisant les liens entre ces derniers) afin de faciliter leur utilisation et leur exploitation par des humains ou par des outils informatiques. Dans un premier temps, nous avons abordé la problématique du calcul de centralité dans les graphes de documents. Nous avons décrit les principaux algorithmes de calcul de centralité existants en mettant l'accent sur le problème TKC (Tightly Knit Community) dont souffre la plupart des mesures de centralité récentes. Ensuite, nous avons proposé trois nouveaux algorithmes de calcul de centralité (MHITS, NHITS et DocRank) permettant d'affronter le phénomène TKC. Les différents algorithmes proposés ont été évalués et comparés aux approches existantes. Des critères d'évaluation ont notamment été proposés pour mesurer l'effet TKC. Dans un deuxième temps, nous nous sommes intéressés au problème de la classification non supervisée de documents. Plus précisément, nous avons envisagé ce regroupement comme une tâche d'identification de structures de communautés (ISC) dans les graphes de documents. Nous avons décrit les principales approches d'ISC existantes en distinguant les approches basées sur un modèle génératif des approches algorithmiques ou classiques. Puis, nous avons proposé un modèle génératif (SPCE) basé sur le lissage et sur une initialisation appropriée pour l'ISC dans des graphes de faible densité. Le modèle SPCE a été évalué et validé en le comparant à d'autres approches d'ISC. Enfin, nous avons montré que le modèle SPCE pouvait être étendu pour prendre en compte simultanément les liens et les contenus des documents.