Tabu-NG : hybridation de programmation par contraintes et recherche locale pour la résolution de CSP

Un très grand nombre de problèmes combinatoires appartient à la famille des problèmes de satisfaction de contraintes (Constraint Satisfaction Problem ou CSP) : configuration, ordonnancement, affectation de ressources... Ces problèmes partagent une description commune qui autorise en général une modé...

Full description

Bibliographic Details
Main Author: Dib, Mohammad
Language:FRE
Published: Université de Technologie de Belfort-Montbeliard 2010
Subjects:
CSP
FAP
PPC
Online Access:http://tel.archives-ouvertes.fr/tel-00607503
http://tel.archives-ouvertes.fr/docs/00/60/75/03/PDF/DIB_Mohammad_TheseUTBM.pdf
Description
Summary:Un très grand nombre de problèmes combinatoires appartient à la famille des problèmes de satisfaction de contraintes (Constraint Satisfaction Problem ou CSP) : configuration, ordonnancement, affectation de ressources... Ces problèmes partagent une description commune qui autorise en général une modélisation claire et intuitive. Dans cette thèse, nous avons proposé et étudié une nouvelle méthode de résolution hybride pour les CSPs. Nous avons nommé cette méthode Tabu-NG pour Tabu Search based on NoGood. Le nom est un peu réducteur car il s'agit d'une hybridation d'algorithme de filtrage, de propagation de contraintes, de Recherche Tabou et de gestion de nogoods. La méthode a été appliquée sur deux types de problèmes. Le premier est l'affectation des fréquences (FAP) dans les réseaux de radiocommunications militaires, en particulier les problèmes proposés de 1993 (instances du projet européen CALMA) jusqu'à 2010 (instances d'un projet DGA). Le deuxième est le problème académique de k-coloration de graphes sur les instances DIMACS. La méthode a amélioré quelques meilleurs scores connus actuellement. Dans les deux problèmes nous avons traité des contraintes unaires et binaires, ainsi que des contraintes n-aires et de l'optimisation de fonction sous contraintes pour le FAP. Les principes de Tabu-NG sont généraux et elle peut s'appliquer sur d'autres CSP. Elle peut par ailleurs accueillir des heuristiques spécifiques aux problèmes, nous l'avons pratiqué sur les problèmes cités, et en ce sens nous pensons pouvoir qualifier la méthode de métaheuristique sans abuser de cette définition.