The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfvén Eigenmodes
Le succès de la fusion nucléaire par confinement magnétique repose sur un confinement efficace des particules alpha, qui sont des ions hautement énergétiques produits par les réactions de fusion. De telles particules peuvent exciter des instabilités dans le domaine de fréquence des modes d'Alfv...
Main Author: | |
---|---|
Language: | ENG |
Published: |
Ecole Polytechnique X
2010
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00563110 http://tel.archives-ouvertes.fr/docs/00/56/31/10/PDF/LESUR_Thesis_electronic.pdf |
Summary: | Le succès de la fusion nucléaire par confinement magnétique repose sur un confinement efficace des particules alpha, qui sont des ions hautement énergétiques produits par les réactions de fusion. De telles particules peuvent exciter des instabilités dans le domaine de fréquence des modes d'Alfvén (AEs) qui dégradent leur confinement et risquent d'endommager l'enceinte à vide de réacteurs futurs. Afin de développer des diagnostiques et moyens de contrôle, une meilleure compréhension des comportements linéaire et non-linéaire des interactions résonantes entre ondes plasma et particules énergétiques, qui constitue le but de cette thèse, est requise. Dans le cas d'une résonance unique et isolée, la description de la déstabilisation des AEs par des ions énergétiques est homothétique au problème de Berk-Breizman (BB), qui est une extension du problème classique de l'instabilité faisceau, incluant un amortissement externe vers un plasma thermique, et des collisions. Un code semi-Lagrangien, COBBLES, est développé pour résoudre le problème aux valeurs initiales de BB selon deux approches, perturbative (delta f) et auto-cohérente (full-f). Deux modèles de collisions sont considérés, à savoir un modèle de Krook, et un modèle qui inclue la friction dynamique et la diffusion dans l'espace des vitesses. Le comportement non-linéaire de ces instabilités dans des conditions correspondantes aux expériences est catégorisé en régimes stable, périodique, chaotique, et de balayage en fréquence (sifflet), selon le taux d'amortissement externe et la fréquence de collision. On montre que le régime chaotique déborde dans une région linéairement stable, et l'on propose un mécanisme qui résout le paradoxe que constitue l'existence de telles instabilités sous-critiques. On développe et valide des lois analytiques et semi-empiriques régissant les caractéristiques non-linéaires de sifflet, telles que la vitesse de balayage, la durée de vie, et l'asymétrie. Des simulations de longue durée démontrent l'existence d'un régime de sifflets quasi-périodiques. Bien que ce régime existe quel que soit l'un des deux modèles de collision, la friction et la diffusion sont essentielles pour reproduire l'alternance entre sifflets et périodes de repos, telle qu'observée expérimentalement. Grâce à ces découvertes, on développe une nouvelle méthode pour analyser des paramètres cinétiques fondamentaux du plasma, tels que le taux de croissance linéaire et le taux d'amortissement externe. Cette méthode, qui consiste à faire correspondre les simulations de COBBLES avec des expériences d'AEs qui présentent des sifflets quasi-périodiques, ne requiert aucun diagnostique interne. Cette approche est appliquée à des AEs induits par la toroidicité (TAEs) sur les machines JT-60 Upgrade et Mega-Amp Spherical Tokamak. On obtient des estimations de paramètres cinétiques locaux qui suggèrent l'existence de TAEs relativement loin de la stabilité marginale. Les résultats sont validés en recouvrant la croissance et décroissance de l'amplitude des perturbations mesurées, et en estimant les fréquences de collision à partir des données expérimentales d'équilibre. |
---|