Contributions à l'identification de modèles paramétriques non linéaires. Application à la modélisation de bassins versants ruraux.

La procédure d'identification consiste à rechercher un modèle mathématique adéquat pour un système dynamique donné à partir de données expérimentales. Alors que l'identification de système est orientée majoritairement pour répondre aux problèmes de commande depuis les années 90, l'ide...

Full description

Bibliographic Details
Main Author: Laurain, Vincent
Language:FRE
Published: Université Henri Poincaré - Nancy I 2010
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00550515
http://tel.archives-ouvertes.fr/docs/00/55/05/15/PDF/TheseLaurain.pdf
Description
Summary:La procédure d'identification consiste à rechercher un modèle mathématique adéquat pour un système dynamique donné à partir de données expérimentales. Alors que l'identification de système est orientée majoritairement pour répondre aux problèmes de commande depuis les années 90, l'identification de systèmes naturels reste cruciale pour une meilleure compréhension de notre environnement. Cette thèse vise à apporter une solution au problème de modélisation de la relation pluie/débit dans un bassin versant rural. Un bassin versant est défini comme la portion de territoire délimitée par des lignes de crête, dont les eaux alimentent un exutoire commun : cours d'eau, lac, mer, etc. L'identification de la relation pluie/débit est un problème stimulant, de par la complexité à trouver une structure de modèle définissant le comportement du bassin dans son ensemble. De plus, dans les bassins ruraux, il y a une grande variabilité spatio-temporelle des propriétés du sol tant au niveau de la végétation, du type de sol ou de l'évapotranspiration et seulement une partie de la pluie totale ruisselle et contribue au débit à l'exutoire. Dans ce cas, les modèles linéaires ne sont pas adaptés et ne peuvent délivrer de modèle acceptable pour la relation pluie/débit. A cet effet, deux structures de modèles non-linéaires sont étudiées : les modèles Hammerstein et les modèles Linéaires à Paramètres variants (LPV). La contribution principale de cette thèse réside dans le développement de méthodes dédiées à l'estimation de ces modèles, à temps discret ou continu, opérant en boucle ouverte ou fermée, en se concentrant sur le cas réaliste où le bruit de sortie est coloré et indépendant du processus étudié : le cas Box--Jenkins (BJ). De plus, les méthodes proposées ont été conçues spécialement pour fournir des résultats utiles dans le cas réel où le modèle de bruit est inconnu ou mal évalué. Finalement, ces méthodes sont utilisées sur des données réelles, acquises sur un bassin versant rural situé à Rouffach, Alsace, France et un processus d'identification innovant est proposé pour la modélisation de la relation pluie/débit.