Modélisation micro-mécanique des microtubules

Les microtubules sont des composants structuraux de cellules et gouvernent des fonctions cellulaires essentielles telles que les mitoses et le transport des vésicules. Ils sont composés de deux sous-unités non identiques (tubulines α et β), formant un dimère, et sont arrangés de sorte à former une s...

Full description

Bibliographic Details
Main Author: Arslan, Melis
Language:ENG
Published: École Nationale Supérieure des Mines de Paris 2010
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00472078
http://tel.archives-ouvertes.fr/docs/00/47/20/78/PDF/Arslan.pdf
id ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-00472078
record_format oai_dc
spelling ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-004720782013-01-07T17:55:27Z http://tel.archives-ouvertes.fr/tel-00472078 2010ENMP1684 http://tel.archives-ouvertes.fr/docs/00/47/20/78/PDF/Arslan.pdf Modélisation micro-mécanique des microtubules Arslan, Melis [SPI:MECA] Engineering Sciences/Mechanics constitutive modeling protein microtubule flexural rigidity shear stiffness Les microtubules sont des composants structuraux de cellules et gouvernent des fonctions cellulaires essentielles telles que les mitoses et le transport des vésicules. Ils sont composés de deux sous-unités non identiques (tubulines α et β), formant un dimère, et sont arrangés de sorte à former une structure tubulaire de 20nm de diamètre. Généralement, ils sont constitués de 13 ou 14 protofilaments arrangés en spirale. Les liaisons longitudinales entre dimères sont plus rigides et fortes que les liaisons latérales. Aussi, les microtubules sont des structures fortement anisotropes. Dans ces travaux de thèse, nous avons pour but de définir l'ensemble des coefficients élastique qui permet de reproduire leur comportement atomistique ainsi que de rendre compte de leur réponse mécanique selon des chemins de chargement variés. En négligeant la discontinuité hélicoïdale souvent observée, un microtubule est représenté par une structure triangulaire de dimères à partir desquels un volume élémentaire représentatif est défini. Un potentiel harmonique est utilisé pour décrire les interactions entre dimères voisins. A partir de l'estimation des constantes élastiques et de l'utilisation de la méthode proposée par Arslan et Boyce (2006) -alors pour analyser le comportement mécanique d'un réseau triangulaire de spectrines composant les membranes des globules rouges-, un modèle continu de comportement mécanique est présenté pour reproduire le comportement des parois des microtubules. Un modèle numérique éléments finis est ensuite créé pour modéliser le comportement d'un microtubule dans sa globalité. Des éléments coques sont utilisés pour reproduire les fines parois des microtubules. Les propriétés du modèle éléments finis sont ajustées à partir des résultats du modèle présenté ainsi qu'aux données expérimentales provenant de la littérature. La rigidité de flexion calculée au cours de simulation des tests de flexion 3 points est en accord avec les valeurs de la littérature. Ces tests révèlent les mécanismes de déformation en fonction de la longueur utile du tube utilisé: Flexion et cisaillement locaux de la paroi gouvernent la déformation pour de "petits" tubes. Pour des longueurs "moyennes" le cisaillement et la flexion du tube prédominent. Enfin, dans le cas de tubes "longs", la déformation est uniquement associée aux effets de flexion. Ces résultats témoignent de l'influence de l'anisotropie du tube sur la réponse observée selon différents mode de sollicitation. Ils permettent également d'expliquer l'évolution de la rigidité de flexion avec la longueur utile du tube, comme reportée dans la littérature. Enfin, des micrographes montrent la propension des extrémités des microtubules à diverger radialement -"à boucler"-. Une telle géométrie est causée par des instabilités propres aux microtubules et implique un état précontraint. Un «modèle d'interactions» est alors proposé de manière à considérer un état précontraint et ainsi reproduire la cinétique des instabilités des microtubules au cours de la polymérisation/dépolymérisation. 2010-01-26 ENG PhD thesis École Nationale Supérieure des Mines de Paris
collection NDLTD
language ENG
sources NDLTD
topic [SPI:MECA] Engineering Sciences/Mechanics
constitutive modeling
protein
microtubule
flexural rigidity
shear stiffness
spellingShingle [SPI:MECA] Engineering Sciences/Mechanics
constitutive modeling
protein
microtubule
flexural rigidity
shear stiffness
Arslan, Melis
Modélisation micro-mécanique des microtubules
description Les microtubules sont des composants structuraux de cellules et gouvernent des fonctions cellulaires essentielles telles que les mitoses et le transport des vésicules. Ils sont composés de deux sous-unités non identiques (tubulines α et β), formant un dimère, et sont arrangés de sorte à former une structure tubulaire de 20nm de diamètre. Généralement, ils sont constitués de 13 ou 14 protofilaments arrangés en spirale. Les liaisons longitudinales entre dimères sont plus rigides et fortes que les liaisons latérales. Aussi, les microtubules sont des structures fortement anisotropes. Dans ces travaux de thèse, nous avons pour but de définir l'ensemble des coefficients élastique qui permet de reproduire leur comportement atomistique ainsi que de rendre compte de leur réponse mécanique selon des chemins de chargement variés. En négligeant la discontinuité hélicoïdale souvent observée, un microtubule est représenté par une structure triangulaire de dimères à partir desquels un volume élémentaire représentatif est défini. Un potentiel harmonique est utilisé pour décrire les interactions entre dimères voisins. A partir de l'estimation des constantes élastiques et de l'utilisation de la méthode proposée par Arslan et Boyce (2006) -alors pour analyser le comportement mécanique d'un réseau triangulaire de spectrines composant les membranes des globules rouges-, un modèle continu de comportement mécanique est présenté pour reproduire le comportement des parois des microtubules. Un modèle numérique éléments finis est ensuite créé pour modéliser le comportement d'un microtubule dans sa globalité. Des éléments coques sont utilisés pour reproduire les fines parois des microtubules. Les propriétés du modèle éléments finis sont ajustées à partir des résultats du modèle présenté ainsi qu'aux données expérimentales provenant de la littérature. La rigidité de flexion calculée au cours de simulation des tests de flexion 3 points est en accord avec les valeurs de la littérature. Ces tests révèlent les mécanismes de déformation en fonction de la longueur utile du tube utilisé: Flexion et cisaillement locaux de la paroi gouvernent la déformation pour de "petits" tubes. Pour des longueurs "moyennes" le cisaillement et la flexion du tube prédominent. Enfin, dans le cas de tubes "longs", la déformation est uniquement associée aux effets de flexion. Ces résultats témoignent de l'influence de l'anisotropie du tube sur la réponse observée selon différents mode de sollicitation. Ils permettent également d'expliquer l'évolution de la rigidité de flexion avec la longueur utile du tube, comme reportée dans la littérature. Enfin, des micrographes montrent la propension des extrémités des microtubules à diverger radialement -"à boucler"-. Une telle géométrie est causée par des instabilités propres aux microtubules et implique un état précontraint. Un «modèle d'interactions» est alors proposé de manière à considérer un état précontraint et ainsi reproduire la cinétique des instabilités des microtubules au cours de la polymérisation/dépolymérisation.
author Arslan, Melis
author_facet Arslan, Melis
author_sort Arslan, Melis
title Modélisation micro-mécanique des microtubules
title_short Modélisation micro-mécanique des microtubules
title_full Modélisation micro-mécanique des microtubules
title_fullStr Modélisation micro-mécanique des microtubules
title_full_unstemmed Modélisation micro-mécanique des microtubules
title_sort modélisation micro-mécanique des microtubules
publisher École Nationale Supérieure des Mines de Paris
publishDate 2010
url http://tel.archives-ouvertes.fr/tel-00472078
http://tel.archives-ouvertes.fr/docs/00/47/20/78/PDF/Arslan.pdf
work_keys_str_mv AT arslanmelis modelisationmicromecaniquedesmicrotubules
_version_ 1716397278373085184