Métaheuristiques pour l'optimisation multiobjectif: Approches coopératives, prise en compte de l'incertitude et application en logistique
De nombreux problèmes d'optimisation issus du monde réel, notamment dans le domaine de la logistique, doivent faire face à beaucoup de difficultés. En effet, ils sont souvent caractérisés par des espaces de recherche vastes et complexes, de multiples fonctions objectif contradictoires, et une f...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université des Sciences et Technologie de Lille - Lille I
2009
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00464166 http://tel.archives-ouvertes.fr/docs/00/46/41/66/PDF/liefooghe.these.pdf |
Summary: | De nombreux problèmes d'optimisation issus du monde réel, notamment dans le domaine de la logistique, doivent faire face à beaucoup de difficultés. En effet, ils sont souvent caractérisés par des espaces de recherche vastes et complexes, de multiples fonctions objectif contradictoires, et une foule d'incertitudes qui doivent être prises en compte. Les métaheuristiques sont des candidates naturelles pour résoudre ces problèmes, ce qui les rend préférables aux méthodes d'optimisation classiques. Toutefois, le développement de métaheuristiques efficaces découle d'un processus de recherche complexe. Le cœur de ce travail réside en la conception, l'implémentation et l'analyse expérimentale de métaheuristiques pour l'optimisation multiobjectif, ainsi que leurs applications à des problèmes logistiques de tournées et d'ordonnancement. Tout d'abord, une vue unifiée de ces approches est présentée, puis intégrée dans une plateforme logicielle dédiée à leur implémentation, ParadisEO-MOEO. Ensuite, plusieurs approches de coopération, combinant des métaheuristiques pour l'optimisation multiobjectif, sont proposées. Enfin, la question de la prise en compte l'incertitude est abordée dans le contexte de l'optimisation multiobjectif. |
---|