Términalité, Désingularisations et Applications Birationnelles Toriques

Dans cette thèse on obtient des conditions suffisantes pour la terminalité des variétés toriques de dimension arbitraire, généralisant des résultats connus en dimension 3 et 4. On classifie les variétés toriques Q-factorielles, terminales, Gorenstein de dimension 4 qui admettent un G-désingularisati...

Full description

Bibliographic Details
Main Author: Colau Merlo, Leandro
Language:FRE
Published: 2009
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00456381
http://tel.archives-ouvertes.fr/docs/00/45/63/81/PDF/These.pdf
Description
Summary:Dans cette thèse on obtient des conditions suffisantes pour la terminalité des variétés toriques de dimension arbitraire, généralisant des résultats connus en dimension 3 et 4. On classifie les variétés toriques Q-factorielles, terminales, Gorenstein de dimension 4 qui admettent un G-désingularisation. Une variété torique X obtenue par l'éclatement a poids d'un point régulier invariant d'une variété de Fano torique avec nombre de Picard égal à 1 est décrit par deux vecteurs en Z^n. En termes de ces vecteurs on décrit le cône nef et on classifie les contractions élémentaires de X au sens de Mori. Dans le cas où la variété de Fano est un espace projectif, on donne quelques familles d'exemples où les variétés éclatées sont terminales.