Prédiction de réseaux d'interactions biomoléculaires à partir de données de la génomique comparée
Les systèmes biologiques présentent de nombreux phénomènes complexes, aux interactions encore plus complexes. La modélisation a pour but de faciliter l'étude et la compréhension des systèmes biologiques, par l'observation ou la simulation des modèles créés. Les réseaux d'interactions...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université Sciences et Technologies - Bordeaux I
2007
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00409871 http://tel.archives-ouvertes.fr/docs/00/40/98/71/PDF/these.pdf |
Summary: | Les systèmes biologiques présentent de nombreux phénomènes complexes, aux interactions encore plus complexes. La modélisation a pour but de faciliter l'étude et la compréhension des systèmes biologiques, par l'observation ou la simulation des modèles créés. Les réseaux d'interactions biomoléculaires sous-tendent ces modèles. Les travaux de thèse que nous présentons portent sur la prédiction systématique de réseaux d'interactions biomoléculaires, afin de fournir les éléments d'entrée nécessaires au processus de modélisation. Les deux thèmes centraux seront la prédiction de réseaux d'interactions protéine-protéine et l'extrapolation de voies métaboliques. Nous définissons tout d'abord un cadre formel d'extraction de graphes d'interactions dictée par des politiques, qui permet de créer des résumés intelligents à partir de jeux de données hétérogènes. Une séparation claire des tâches d'extraction et de visualisation de l'information nous permet d'exprimer différents algorithmes existants, estimant par exemple la qualité des réseaux d'interactions biomoléculaires prédits. Nous avons mis en oeuvre ce cadre formel dans le logiciel ProViz [Iragne et al., 2005]. Nous présentons par la suite, des méthodes informatiques d'extrapolation de voies métaboliques, inspirées du précédent formalisme et basées sur l'utilisation de voies de référence et sur une identification robuste d'équivalents fonctionnels. Ces méthodes nous permettent de prédire un ensemble de voies métaboliques centrales, formant la base de modèles pour des organismes dont seules les données génomiques sont disponibles. Les différents résultats, disponibles en ligne [Sherman et al., 2006] ou en cours de publication, nous permettent de valider notre approche. |
---|