Estimation paramétrique d'une diffusion ergodique observée à temps discret

Cette thèse comporte cinq chapitres.<br /><br />Chapitre 1 : Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion. <br />Pour estimer le paramètre de dérive d'une diffusion unidimensionnelle ergodique observée à pas d>0 et fixé, o...

Full description

Bibliographic Details
Main Author: Souchet, Sandie
Language:FRE
Published: Université Panthéon-Sorbonne - Paris I 1999
Subjects:
CAR
Online Access:http://tel.archives-ouvertes.fr/tel-00276933
http://tel.archives-ouvertes.fr/docs/00/27/69/33/PDF/souchet_these.pdf
id ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-00276933
record_format oai_dc
spelling ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-002769332013-01-07T18:36:01Z http://tel.archives-ouvertes.fr/tel-00276933 http://tel.archives-ouvertes.fr/docs/00/27/69/33/PDF/souchet_these.pdf Estimation paramétrique d'une diffusion ergodique observée à temps discret Souchet, Sandie [MATH] Mathematics Estimation parametrique diffusion ergodique schéma d'approximation CAR Estimateur de volume de Cavalieri Cette thèse comporte cinq chapitres.<br /><br />Chapitre 1 : Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion. <br />Pour estimer le paramètre de dérive d'une diffusion unidimensionnelle ergodique observée à pas d>0 et fixé, on construit des contrastes basés sur des schémas d'approximation anticipatifs (schéma du trapèze et de Simpson) couplés à la méthode d'estimation des moments généralisés. Les estimateurs obtenus présentent des biais d'estimation en d**2 pour le schéma du trapèze et en d**4 pour le schéma de Simpson. L'efficacité asymptotique est par ailleurs préservée à un facteur (1+O(d)) près.<br /><br />Chapitre 2 : Schéma d'approximation adapté à l'ordre p et estimation de la dérive d'une diffusion.<br />Pour estimer le paramètre de dérive d'une diffusion ergodique observée à pas d, nous approximons la vraisemblance exacte de l'échantillon par celle d'un processus gaussien dont l'espérance conditionnelle est approchée à l'ordre d**p. L'estimateur obtenu est asymptotiquement biaisé. Ce biais est explicite et est de l'ordre de d**p. L'efficacité asymptotique est par ailleurs préservée à un facteur près. <br /><br />Chapitre 3 : Estimation du paramètre de dérive d'une diffusion sous des conditions d'irrégularité de la dérive.<br />Le problème étudié est l'analogue de celui étudié par Chan pour les AR à seuil (Threshold, Ann. Stat. 1993). Ici, le temps n'est plus discret mais continu. La dérive de la diffusion est continue, mais à dérivées discontinues en un seuil r. Le problème étudié est celui de l'estimation de ce seuil r. Si le pas d'observation d_n tend vers 0 et si T=n*d_n tend vers l'infini, l'estimateur des Moindres carrés (associé au schéma d'Euler ) de r est consistant. Si de plus n*(d_n)**3 tend vers 0, il y a normalité asymptotique à une vitesse standard. <br /><br />Chapitre 4 : Estimation d'un CAR(p) incomplètement observé à partir des équations de Yule-Walker.<br />Un travail de Hyndman (JTSA, 93) présente les équations de Yule-Walker pour un CAR(p), X, (qui est aussi une diffusion p-dimensionnelle, Y=(X, X(1),...,X(p-1))) et l'estimation des paramètres déduite sur la base de ces équations et de l'observation complète de Y (temps continu et observation des p-composantes de Y). Adoptant une méthodologie identique, nous étudions ce problème d'estimation lorsque l'on ne dispose que de l'observation de X, la première composante de Y, et ceci à des instants discrets (au pas d). Nous proposons <br />un estimateur convergent des paramètres à un biais près de l'ordre de d.<br /><br />Chapitre 5 : Precision of systematic sampling and transitive methods.<br />Nous proposons une méthode d'estimation dérivée des méthodes transitives utilisées notamment dans le domaine de la stéréologie. Cette méthode permet d'estimer l'écart quadratique moyen d'estimateurs empiriques construits à partir d'un échantillonnage systématique. 1999-01-13 FRE PhD thesis Université Panthéon-Sorbonne - Paris I
collection NDLTD
language FRE
sources NDLTD
topic [MATH] Mathematics
Estimation parametrique
diffusion ergodique
schéma d'approximation
CAR
Estimateur de volume de Cavalieri
spellingShingle [MATH] Mathematics
Estimation parametrique
diffusion ergodique
schéma d'approximation
CAR
Estimateur de volume de Cavalieri
Souchet, Sandie
Estimation paramétrique d'une diffusion ergodique observée à temps discret
description Cette thèse comporte cinq chapitres.<br /><br />Chapitre 1 : Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion. <br />Pour estimer le paramètre de dérive d'une diffusion unidimensionnelle ergodique observée à pas d>0 et fixé, on construit des contrastes basés sur des schémas d'approximation anticipatifs (schéma du trapèze et de Simpson) couplés à la méthode d'estimation des moments généralisés. Les estimateurs obtenus présentent des biais d'estimation en d**2 pour le schéma du trapèze et en d**4 pour le schéma de Simpson. L'efficacité asymptotique est par ailleurs préservée à un facteur (1+O(d)) près.<br /><br />Chapitre 2 : Schéma d'approximation adapté à l'ordre p et estimation de la dérive d'une diffusion.<br />Pour estimer le paramètre de dérive d'une diffusion ergodique observée à pas d, nous approximons la vraisemblance exacte de l'échantillon par celle d'un processus gaussien dont l'espérance conditionnelle est approchée à l'ordre d**p. L'estimateur obtenu est asymptotiquement biaisé. Ce biais est explicite et est de l'ordre de d**p. L'efficacité asymptotique est par ailleurs préservée à un facteur près. <br /><br />Chapitre 3 : Estimation du paramètre de dérive d'une diffusion sous des conditions d'irrégularité de la dérive.<br />Le problème étudié est l'analogue de celui étudié par Chan pour les AR à seuil (Threshold, Ann. Stat. 1993). Ici, le temps n'est plus discret mais continu. La dérive de la diffusion est continue, mais à dérivées discontinues en un seuil r. Le problème étudié est celui de l'estimation de ce seuil r. Si le pas d'observation d_n tend vers 0 et si T=n*d_n tend vers l'infini, l'estimateur des Moindres carrés (associé au schéma d'Euler ) de r est consistant. Si de plus n*(d_n)**3 tend vers 0, il y a normalité asymptotique à une vitesse standard. <br /><br />Chapitre 4 : Estimation d'un CAR(p) incomplètement observé à partir des équations de Yule-Walker.<br />Un travail de Hyndman (JTSA, 93) présente les équations de Yule-Walker pour un CAR(p), X, (qui est aussi une diffusion p-dimensionnelle, Y=(X, X(1),...,X(p-1))) et l'estimation des paramètres déduite sur la base de ces équations et de l'observation complète de Y (temps continu et observation des p-composantes de Y). Adoptant une méthodologie identique, nous étudions ce problème d'estimation lorsque l'on ne dispose que de l'observation de X, la première composante de Y, et ceci à des instants discrets (au pas d). Nous proposons <br />un estimateur convergent des paramètres à un biais près de l'ordre de d.<br /><br />Chapitre 5 : Precision of systematic sampling and transitive methods.<br />Nous proposons une méthode d'estimation dérivée des méthodes transitives utilisées notamment dans le domaine de la stéréologie. Cette méthode permet d'estimer l'écart quadratique moyen d'estimateurs empiriques construits à partir d'un échantillonnage systématique.
author Souchet, Sandie
author_facet Souchet, Sandie
author_sort Souchet, Sandie
title Estimation paramétrique d'une diffusion ergodique observée à temps discret
title_short Estimation paramétrique d'une diffusion ergodique observée à temps discret
title_full Estimation paramétrique d'une diffusion ergodique observée à temps discret
title_fullStr Estimation paramétrique d'une diffusion ergodique observée à temps discret
title_full_unstemmed Estimation paramétrique d'une diffusion ergodique observée à temps discret
title_sort estimation paramétrique d'une diffusion ergodique observée à temps discret
publisher Université Panthéon-Sorbonne - Paris I
publishDate 1999
url http://tel.archives-ouvertes.fr/tel-00276933
http://tel.archives-ouvertes.fr/docs/00/27/69/33/PDF/souchet_these.pdf
work_keys_str_mv AT souchetsandie estimationparametriquedunediffusionergodiqueobserveeatempsdiscret
_version_ 1716453493901885440