Autour du problème de Lehmer relatif dans un tore
Le problème de Lehmer consiste à minorer la hauteur de Weil d'un nombre algébrique en fonction de son degré sur Q. Si la question originelle de Lehmer reste aujourd'hui sans réponse, la conjecture optimale correspondante a été démontrée à un epsilon près. Par ailleurs, ce problème admet pl...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université de Caen
2007
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00259956 http://tel.archives-ouvertes.fr/docs/00/25/99/56/PDF/these_Delsinne.pdf http://tel.archives-ouvertes.fr/docs/00/25/99/56/ANNEX/expose_soutenance.pdf |
Summary: | Le problème de Lehmer consiste à minorer la hauteur de Weil d'un nombre algébrique en fonction de son degré sur Q. Si la question originelle de Lehmer reste aujourd'hui sans réponse, la conjecture optimale correspondante a été démontrée à un epsilon près. Par ailleurs, ce problème admet plusieurs généralisations. D'une part, on peut formuler le même type de conjecture en remplaçant le corps des rationnels par une extension abélienne d'un corps de nombres. D'autre part, on peut généraliser ces énoncés en dimension supérieure. Il s'agit alors de minorer la hauteur normalisée d'un point ou d'une sous-variété d'un tore ; dans ce cas, on substitue au degré un invariant plus fin : l'indice d'obstruction. Il est ensuite naturel de chercher à combiner ces deux généralisations : c'est le problème de Lehmer relatif dans un tore.<br /><br />Dans cette thèse, nous considérons tout d'abord le problème de Lehmer relatif unidimensionnel. Nous donnons une minoration pour la hauteur d'un nombre algébrique en fonction de son degré sur une extension abélienne d'un corps de nombres. Il s'agit d'une amélioration d'un théorème d'Amoroso et Zannier, obtenue à l'aide d'une démonstration techniquement plus simple. De plus, nous explicitons la dépendance de la borne inférieure en le corps de base. Puis nous abordons le problème de Lehmer relatif en dimension supérieure et minorons la hauteur d'une hypersurface en fonction de son indice d'obstruction sur une extension abélienne de Q. Enfin, nous obtenons un résultat analogue pour un point, sous réserve que celui-ci satisfasse une hypothèse technique. Nous montrons ainsi les conjectures les plus fines à un epsilon près. |
---|