Techniques de réduction de données et analyse d'images multispectrales astronomiques par arbres de Markov
Le développement de nouveaux capteurs multispectraux en imagerie astronomique permet l'acquisition de données d'une grande richesse. Néanmoins, la classification d'images multidimensionnelles se heurte souvent au phénomène de Hughes : l'augmentation de la dimensionnalité s'a...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université Louis Pasteur - Strasbourg I
2005
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00156963 http://tel.archives-ouvertes.fr/docs/00/15/69/63/PDF/PhD_Flitti.pdf |
Summary: | Le développement de nouveaux capteurs multispectraux en imagerie astronomique permet l'acquisition de données d'une grande richesse. Néanmoins, la classification d'images multidimensionnelles se heurte souvent au phénomène de Hughes : l'augmentation de la dimensionnalité s'accompagne d'un accroissement du nombre de paramètres du modèle et donc inévitablement une baisse de précision de leur estimation entrainant une dégradation de la qualité de la segmentation. Il est donc impératif d'écarter l'information redondante afin de réaliser des opérations de segmentation ou de classification robustes. Dans le cadre de cette thèse, nous avons propose deux méthodes de réduction de la dimensionnalité pour des images multispectrales : 1) le regroupement de bandes suivis de projections locales ; 2) la réduction des cubes radio par un modèle de mélange de gaussiennes. Nous avons également propose un schéma de réduction/segmentation jointe base sur la régularisation du mélange d'analyseurs en composantes principales probabilistes (MACPP). En se qui concerne la tâche de segmentation, nous avons choisie une approche bayésienne s'appuyant sur des modèles hiérarchiques récents a base d'arbres de Markov cache et couple. Ces modèles permettent en effet un calcul rapide et exact des probabilités a posteriori. Pour le terme d'attache aux données, nous avons utilisée la loi gaussienne multidimensionnelle classique, la loi gaussienne généralisée multidimensionnelles formulée grâce à la théorie des copules et la vraisemblance par rapport au modèle de l'ACP probabiliste (dans le cadre de la MACPP régularisée). L'apport majeur de ce travail consiste donc a proposer différents modèles markoviens hiérarchiques de segmentation adaptés aux données multidimensionnelles multirésolutions. Leur exploitation pour des données issues d'une analyse par ondelettes adaptée au contexte astronomique nous a permis de développer des techniques de débruitage et de fusion d'images astronomiques multispectrales nouvelles. Tous les algorithmes sont non supervises et ont été valides sur des images synthétiques et réelles. |
---|