Classification des objets galoisiens d'une algèbre de Hopf

Cette thèse porte sur la classification des objets galoisiens d'une algèbre de Hopf. Le concept d'extension de Hopf-Galois, qui a été beaucoup étudié ces dernières années, est une généralisation du concept d'extension galoisienne de corps, mais aussi un analogue des fibrés principaux...

Full description

Bibliographic Details
Main Author: Aubriot, Thomas
Language:FRE
Published: Université Louis Pasteur - Strasbourg I 2007
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00151368
http://tel.archives-ouvertes.fr/docs/00/15/13/68/PDF/these_chapitres.pdf
Description
Summary:Cette thèse porte sur la classification des objets galoisiens d'une algèbre de Hopf. Le concept d'extension de Hopf-Galois, qui a été beaucoup étudié ces dernières années, est une généralisation du concept d'extension galoisienne de corps, mais aussi un analogue des fibrés principaux dans le cadre de la géométrie non commutative. Si $H$ est une algèbre de Hopf, une algèbre $H$-comodule $(Z,\delta: Z \to Z \otimes H)$ est une $H$-extension de Hopf-Galois d'une sous-algèbre $B\subset Z$ si l'ensemble des éléments co\"\i nvariants de $Z$ co\"\i ncide avec $B$ et si l'application canonique $\beta : Z \otimes _B Z \to Z\otimes H$ définie par <br />$$ \beta (x\otimes y ) = \delta (x) (y\otimes 1)$$ est une bijection. Les objets galoisiens forment une classe importante d'extensions de Hopf-Galois ; ce sont celles dont la sous-algèbre des co\"\i nvariants se réduit à l'anneau de base. Bien qu'une littérature abondante ait été consacrée aux extensions de Hopf-Galois, on a peu de résultats sur leur classification à isomorphisme près. Pour contourner la difficulté de classer les extensions de Hopf-Galois à isomorphisme près, Kassel a introduit et développé avec Schneider une relation d'équivalence sur les extensions de Hopf-Galois qu'il a appelée homotopie. <br /><br />Dans cette thèse nous donnons des résultats de classification à homotopie et à isomorphisme près. Notre approche de la classification des objets galoisiens tourne autour de trois axes. <br />\begin{itemize} <br />\item[a)] La construction explicite de représentants des classes d'homotopie des objets galoisiens de l'algèbre $U_q(\mathfrak{g})$ associée par Drinfeld et Jimbo à une algèbre de Lie $\mathfrak{g}$, explicitant ainsi un théorème de Kassel et Schneider. <br />\item[b)] Une étude des objets galoisiens de l'alg\` ebre quantique $O_q (SL(2))$ des fonctions sur le groupe $SL (2)$, et donc un résultat de classification en dimension infinie; nous donnons la classification à isomorphisme près et des résultats partiels pour la classification à homotopie près. <br />\item[c)] Une étude systématique de la classification à isomorphisme et à homotopie près pour les algèbres de Hopf de dimension $\leq 15$ ; nous synthétisons des résultats éparpillés dans la littérature, portant sur des familles d'algèbres de Hopf pointées ou semisimples et nous complétons ces résultats en donnant la classification des objets galoisiens d'une algèbre de Hopf de dimension $8$ qui n'est ni semisimple ni <br />pointée. <br />\end{itemize}