Estimation non-paramétrique de données censurées dans un cadre multi-états
Cette thèse porte sur le modèle des risques concurrents et sur le modèle des évènements <br />récurrents.<br />Dans le cadre des risques concurrents, on s'intéresse aux fonctions <br />d'incidences cumulées : elles correspondent à la probabilité qu'un évènement d...
Main Author: | |
---|---|
Language: | ENG |
Published: |
Université Pierre et Marie Curie - Paris VI
2006
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00138280 http://tel.archives-ouvertes.fr/docs/00/13/82/80/PDF/these-Geffray.pdf |
Summary: | Cette thèse porte sur le modèle des risques concurrents et sur le modèle des évènements <br />récurrents.<br />Dans le cadre des risques concurrents, on s'intéresse aux fonctions <br />d'incidences cumulées : elles correspondent à la probabilité qu'un évènement d'un certain type se <br />produise avant un instant donné. Ces fonctions sont estimées de façon non-paramétrique au moyen <br />de l'estimateur de Aalen-Johansen. Des résultats d'approximation forte, de loi du logarithme <br />itéré et de convergence faible pour des processus basés sur l'estimateur de Aalen-Johansen sont <br />établis. Des bandes de confiance sont construites et simulées. Une extension du modèle de <br />Koziol-Green est aussi considérée.<br />Dans le cadre d'évènements récurrents, des fonctions d'incidences cumulées conditionnelles sont <br />estimées de façon non-paramétrique. Les estimateurs proposés sont consistants et leur <br />comportement à distance finie est illustré sur des données réelles et simulées. |
---|