Courbes rationnelles et hypersurfaces de l'espace projectif

Une variété algébrique est dite unirationnelle si elle est dominée par un espace projectif ; elle est dite séparablement unirationnelle si on peut prendre le morphisme précédent séparable. Cette dernière propriété n'a d'intérêt qu'en caractéristique positive. En reprenant la démonstra...

Full description

Bibliographic Details
Main Author: Conduché, Denis
Language:FRE
Published: Université Louis Pasteur - Strasbourg I 2006
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00115879
http://tel.archives-ouvertes.fr/docs/00/11/58/79/PDF/these.pdf
Description
Summary:Une variété algébrique est dite unirationnelle si elle est dominée par un espace projectif ; elle est dite séparablement unirationnelle si on peut prendre le morphisme précédent séparable. Cette dernière propriété n'a d'intérêt qu'en caractéristique positive. En reprenant la démonstration de Paranjape et Srinivas de l'unirationalité des hypersurfaces de degré très petit devant la dimension, nous remarquons qu'elle montre en fait l'unirationalité séparable. Nous nous intéressons aussi à la séparabilité des morphismes fournis par différentes constructions classiques de l'unirationalité des hypersurfaces cubiques.<br /><br />Dans la troisième partie, nous étudions la connexité rationnelle séparable : une variété projective lisse X sur un corps algébriquement clos est dite séparablement rationnellement connexe s'il existe une courbe rationnelle très libre (c'est-à-dire à fibré normal ample) sur X. Nous testons sur les hypersurfaces de Fermat de dimension N-1 et de degré q+1, où q est une puissance de la caractéristique du corps de base, la conjecture que toutes les hypersurfaces lisses de dimension N-1 et de degré plus petit que N sont séparablement rationnellement connexes. Nous montrons que pour N plus grand que 2q-1, l'hypersurface de Fermat de degré q+1 contient une courbe rationnelle très libre définie sur le sous-corps premier ; elle est donc séparablement rationnellement connexe.