Surfaces branchées en géométrie de contact

Le but de cette thèse est d'établir des liens entre la théorie des laminations et celle des structures de contact, via les surfaces branchées. Cette démarche est motivée par l'existence de liens étroits entre les structures de contact tendues et les feuilletages tendus. <br />Le résu...

Full description

Bibliographic Details
Main Author: Zannad, Skander
Language:FRE
Published: Université de Nantes 2006
Subjects:
Online Access:http://tel.archives-ouvertes.fr/tel-00103561
http://tel.archives-ouvertes.fr/docs/00/10/35/61/PDF/these.pdf
Description
Summary:Le but de cette thèse est d'établir des liens entre la théorie des laminations et celle des structures de contact, via les surfaces branchées. Cette démarche est motivée par l'existence de liens étroits entre les structures de contact tendues et les feuilletages tendus. <br />Le résultat principal est l'obtention d'une condition suffisante pour qu'une surface branchée B d'une variété V de dimension 3 porte pleinement une lamination. Il en découle une condition suffisante pour que le rappel de B dans le revêtement universel de V porte pleinement une lamination. Cette condition est nécessaire pour que cette lamination soit essentielle. Ce résultat apporte un élément de réponse à une question classique de Gabai.<br />On introduit ensuite une notion de structure de contact portée par une surface branchée qui généralise celle de Oertel-Swiatkowski. Enfin, on établit une condition sufisante pour que deux structures de contact soient, à isotopie près, portées par une même surface branchée.