Analyse spectrale de modèles neutroniques
Cette thèse porte principalement sur l'étude spectrale de divers modèles neutroniques. Elle consiste en trois parties complémentaires. La première partie est consacrée aux problèmes d'applications spectrales dans les domaines non bornés, où faute de compacité les méthodes usuelles n'o...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université de Franche-Comté
2005
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00011072 http://tel.archives-ouvertes.fr/docs/00/04/87/71/PDF/tel-00011072.pdf |
id |
ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-00011072 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-000110722013-01-07T19:06:21Z http://tel.archives-ouvertes.fr/tel-00011072 http://tel.archives-ouvertes.fr/docs/00/04/87/71/PDF/tel-00011072.pdf Analyse spectrale de modèles neutroniques Sbihi, Mohammed [MATH] Mathematics Equation de transport modèle de collision partiellement élastique domaines non bornés théorème d'application spectrale spectre critique spectre essentiel continuité en norme compacité approche résolvante positivité Cette thèse porte principalement sur l'étude spectrale de divers modèles neutroniques. Elle consiste en trois parties complémentaires. La première partie est consacrée aux problèmes d'applications spectrales dans les domaines non bornés, où faute de compacité les méthodes usuelles n'opèrent plus. A l'aide d'arguments d'analyse fonctionnelle sur le spectre critique des semigroupes perturbés nous cernons une large classe de paramètres liés à l'équation pour lesquels le théorème d'application spectrale a lieu. Dans la deuxième partie, nous apportons une nouvelle approche, dite résolvante, de la stabilité des spectres essentiel et critique des semigroupes perturbés dans les espaces de Hilbert. En neutronique, par le biais de cette approche, nous retrouvons des résultats classiques de stabilité de spectre essentiel dans les domaines bornés et nous améliorons certains résultats de la première partie dans les domaines non bornés. La troisième partie traite d'un modèle de collision partiellement élastique introduit par E.W. Larsen et P.F. Zweifel. Afin de dégager le comportement asymptotique en temps grands du semigroupe gouvernant ce modèle nous ferons sa théorie spectrale. Nous étudions les propriétés de compacité à la base de cette théorie, ce qui nous permettra notamment d'obtenir des résultats de stabilité du type essentiel. Nous examinons ensuite les incidences de la positivité : irréductibilité, propriétés de monotonie stricte de la valeur propre principale, réalité du spectre périphérique 2005-09-30 FRE PhD thesis Université de Franche-Comté |
collection |
NDLTD |
language |
FRE |
sources |
NDLTD |
topic |
[MATH] Mathematics Equation de transport modèle de collision partiellement élastique domaines non bornés théorème d'application spectrale spectre critique spectre essentiel continuité en norme compacité approche résolvante positivité |
spellingShingle |
[MATH] Mathematics Equation de transport modèle de collision partiellement élastique domaines non bornés théorème d'application spectrale spectre critique spectre essentiel continuité en norme compacité approche résolvante positivité Sbihi, Mohammed Analyse spectrale de modèles neutroniques |
description |
Cette thèse porte principalement sur l'étude spectrale de divers modèles neutroniques. Elle consiste en trois parties complémentaires. La première partie est consacrée aux problèmes d'applications spectrales dans les domaines non bornés, où faute de compacité les méthodes usuelles n'opèrent plus. A l'aide d'arguments d'analyse fonctionnelle sur le spectre critique des semigroupes perturbés nous cernons une large classe de paramètres liés à l'équation pour lesquels le théorème d'application spectrale a lieu. Dans la deuxième partie, nous apportons une nouvelle approche, dite résolvante, de la stabilité des spectres essentiel et critique des semigroupes perturbés dans les espaces de Hilbert. En neutronique, par le biais de cette approche, nous retrouvons des résultats classiques de stabilité de spectre essentiel dans les domaines bornés et nous améliorons certains résultats de la première partie dans les domaines non bornés. La troisième partie traite d'un modèle de collision partiellement élastique introduit par E.W. Larsen et P.F. Zweifel. Afin de dégager le comportement asymptotique en temps grands du semigroupe gouvernant ce modèle nous ferons sa théorie spectrale. Nous étudions les propriétés de compacité à la base de cette théorie, ce qui nous permettra notamment d'obtenir des résultats de stabilité du type essentiel. Nous examinons ensuite les incidences de la positivité : irréductibilité, propriétés de monotonie stricte de la valeur propre principale, réalité du spectre périphérique |
author |
Sbihi, Mohammed |
author_facet |
Sbihi, Mohammed |
author_sort |
Sbihi, Mohammed |
title |
Analyse spectrale de modèles neutroniques |
title_short |
Analyse spectrale de modèles neutroniques |
title_full |
Analyse spectrale de modèles neutroniques |
title_fullStr |
Analyse spectrale de modèles neutroniques |
title_full_unstemmed |
Analyse spectrale de modèles neutroniques |
title_sort |
analyse spectrale de modèles neutroniques |
publisher |
Université de Franche-Comté |
publishDate |
2005 |
url |
http://tel.archives-ouvertes.fr/tel-00011072 http://tel.archives-ouvertes.fr/docs/00/04/87/71/PDF/tel-00011072.pdf |
work_keys_str_mv |
AT sbihimohammed analysespectraledemodelesneutroniques |
_version_ |
1716455866197082112 |