Formalisation en logique linéaire du fonctionnement des réseaux de Petri
En logique classique, la formalisation du fonctionnement des réseaux de Petri (RdP) se heurte à la pérennité de la vérité. En logique modale, elle impose la construction préalable du graphe des marquages accessibles. A contrario, la logique linéaire (LL) fondée par Girard permet de formaliser direct...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université Paul Sabatier - Toulouse III
1997
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00010245 http://tel.archives-ouvertes.fr/docs/00/04/84/64/PDF/tel-00010245.pdf |
Summary: | En logique classique, la formalisation du fonctionnement des réseaux de Petri (RdP) se heurte à la pérennité de la vérité. En logique modale, elle impose la construction préalable du graphe des marquages accessibles. A contrario, la logique linéaire (LL) fondée par Girard permet de formaliser directement par des séquents prouvables purement propositionnels les relations d'accessibilité dans les RdP : toute transition apparaît comme une implication linéaire disponible ad libitum entre les propositions traduisant ses marquages d'entrée et de sortie. Pour approfondir cette formalisation, nous définissons comme primitives en LL les notions de ressource, d'action et de consommabilité/productibilité, analogues mais distinctes de celles de proposition, de déduction et de vérité/fausseté en logique classique. Nous développons une interprétation concrète pour tous les connecteurs linéaires en cohérence avec leurs propriétés syntaxiques. Nous présentons le connecteur « par » comme un opérateur de cumul disjoint d'exemplaires de ressources (dual du connecteur « fois » de cumul conjoint) et la négation linéaire « nil » comme un inverseur du sens du temps. Cette concrétisation montre les limites des formalisations existantes des RdP en LL ; nous les généralisons en traduisant chaque transition par une implication linéaire ordinaire, traitée comme une ressource périssable, dont tout exemplaire consommé correspond à une occurrence de franchissement. Ainsi, nous apportons une expression logique aux aspects primordiaux du fonctionnement des RdP : nous démontrons qu'une relation d'accessibilité par séquence de transitions équivaut à un séquent prouvable et que l'équation fondamentale est l'expression algébrique d'un corollaire du critère d'équilibrage en LL. Grâce à la combinatoire de tous les connecteurs linéaires, notre approche ouvre des perspectives d'analyse de relations complexes d'accessibilité comme celles de reprise après défa illance dans un système industriel. |
---|