Unicité, reconstruction, stabilité pour des problèmes inverses bidimensionnels
Dans cette thèse nous étudions quelques problèmes inverses de valeurs au bord en dimension deux. Les problèmes considérés sont le problème de Calderon et le problème de Gel'fand-Calderon dans le cas scalaire et multi-canal, c'est-à-dire matriciel : cela peut etre vu notamment comme une app...
Main Author: | |
---|---|
Language: | ENG |
Published: |
Ecole Polytechnique X
2012
|
Subjects: | |
Online Access: | http://pastel.archives-ouvertes.fr/pastel-00759992 http://pastel.archives-ouvertes.fr/docs/00/75/99/92/PDF/these.pdf |
Summary: | Dans cette thèse nous étudions quelques problèmes inverses de valeurs au bord en dimension deux. Les problèmes considérés sont le problème de Calderon et le problème de Gel'fand-Calderon dans le cas scalaire et multi-canal, c'est-à-dire matriciel : cela peut etre vu notamment comme une approximation non-surdéterminée du cas tridimensionnel. Nous montrons d'abord quelques résultats pour le problème de Calderon anisotrope : nous présentons une nouvelle formulation du résultat d'unicité sur le plan ainsi que le premier résultat d'unicité globale pour le cas des surfaces à bord. Après, nous démontrons une nouvelle estimation de stabilité globale pour le problème de Gel'fand-Calderon dans le cas scalaire et multi-canal. Des techniques similaires donnent aussi une procédure de reconstruction globale pour le meme problème. Nous proposons ensuite un algorithme d'approximation rapidement convergent pour le problème de Gel'fand-Calderon multi-canal : cet algorithme est principalement motivé par des résultats de la théorie de diffusion inverse multi-dimensionnelle. Comme derniers résultats nous présentons des nouvelles estimations de stabilité globale pour les deux problèmes mentionnés plus haut qui dépendent explicitement de la régularité et de l'énergie. |
---|