Méthodes numériques de représentation à variables séparées pour la résolution des problèmes paramétriques en mécanique non-linéaire des structures

Le principal objectif de ce travail est de proposer une méthode de simulation de transformations thermomécaniques bien adaptée aux problèmes d'optimisation traités en milieu industriel ou en laboratoire. Il y a deux types d'approches en optimisation : l'optimisation avec réalisation d...

Full description

Bibliographic Details
Main Author: Cartel, Sophie
Language:FRE
Published: École Nationale Supérieure des Mines de Paris 2011
Subjects:
Online Access:http://pastel.archives-ouvertes.fr/pastel-00661905
http://pastel.archives-ouvertes.fr/docs/00/66/19/05/PDF/These_Cartel.pdf
http://pastel.archives-ouvertes.fr/docs/00/66/19/05/ANNEX/Soutenance_Cartel.pdf
Description
Summary:Le principal objectif de ce travail est de proposer une méthode de simulation de transformations thermomécaniques bien adaptée aux problèmes d'optimisation traités en milieu industriel ou en laboratoire. Il y a deux types d'approches en optimisation : l'optimisation avec réalisation de suites de simulations thermomécaniques en cours de recherche de l'optimum, ou l'optimisation à l'aide de surfaces de réponses, construites grâce à un ensemble de simulations avant de commencer la recherche de l'optimum. Pour ces deux approches, nous proposons d'exploiter une méthode de réduction adaptative de modèles (APHR), permettant ainsi d'obtenir des modèles simplifiés capables de mieux capter les différentes sensibilités de la réponse du système aux variations des paramètres à optimiser. La première approche consiste donc à effectuer une suite de calculs en cours d'optimisation. Nous proposons de compléter la méthode APHR par une méthode de gestion des évènements récurrents apparaissant dans différentes prévisions. Le principe de la solution proposée est d'introduire un coefficient d'oubli dans la définition des modes empiriques. Elle a été illustrée sur un problème élastoplastique avec prévision des dommages par une loi de Rousselier, sur lequel nous avons cherché à recaler les paramètres matériaux. Ce facteur d'oubli a permis d'améliorer l'efficacité de la méthode APHR dans le cadre du recalage de modèle. Concernant l'optimisation à l'aide de surfaces de réponses, nous nous intéressons uniquement à la construction de ces surfaces de réponses dans le cadre d'une analyse de sensibilité. L'originalité de l'approche développée consiste à développer une méthode numérique de représentation à variables séparées pour la représentation de problèmes paramétriques. Il s'agit de traiter de façon simultanée l'ensemble de problème multidimensionnel. Cette nouvelle approche a été illustrée sur un modèle de frittage et l'efficacité de la méthode a été prouvée par la réduction de la complexité du problème.