Définition d'une logique probabiliste tolérante à l'inconsistance : appliquée à la reconnaissance de scénarios et à la théorie du vote

Les humains raisonnent souvent en présence d'informations contradictoires. Dans cette thèse, j'ébauche une axiomatisation du sens commun sous-jacent à ce raisonnement dit paraconsistant. L'implémentation de cette axiomatisation dans les ordinateurs autonomes sera essentielle si nous e...

Full description

Bibliographic Details
Main Author: Daniel, Lionel
Language:ENG
Published: École Nationale Supérieure des Mines de Paris 2010
Subjects:
Online Access:http://pastel.archives-ouvertes.fr/pastel-00537758
http://pastel.archives-ouvertes.fr/docs/00/53/77/58/PDF/These-Lionel_Daniel.pdf
id ndltd-CCSD-oai-pastel.archives-ouvertes.fr-pastel-00537758
record_format oai_dc
spelling ndltd-CCSD-oai-pastel.archives-ouvertes.fr-pastel-005377582013-01-07T17:47:33Z http://pastel.archives-ouvertes.fr/pastel-00537758 2010ENMP0003 http://pastel.archives-ouvertes.fr/docs/00/53/77/58/PDF/These-Lionel_Daniel.pdf Définition d'une logique probabiliste tolérante à l'inconsistance : appliquée à la reconnaissance de scénarios et à la théorie du vote Daniel, Lionel [SPI:AUTO] Engineering Sciences/Automatic logique probabilité inconsistance base de connaissances raisonnement mesure Les humains raisonnent souvent en présence d'informations contradictoires. Dans cette thèse, j'ébauche une axiomatisation du sens commun sous-jacent à ce raisonnement dit paraconsistant. L'implémentation de cette axiomatisation dans les ordinateurs autonomes sera essentielle si nous envisageons de leur déléguer des décisions critiques ; il faudra également vérifier formellement que leurs réactions soient sans risque en toute situation, même incertaine. Une situation incertaine est ici modélisée par une base de connaissances probabilistes éventuellement inconsistante ; c'est un multi-ensemble de contraintes éventuellement insatisfiable sur une distribution de probabilité de phrases d'un langage propositionnel, où un niveau de confiance peut être attribué à chaque contrainte. Le principal problème abordé est l'inférence de la distribution de probabilité qui représente au mieux le monde réel, d'après une base de connaissances donnée. Les réactions de l'ordinateur, préalablement programmées puis vérifiées, seront déterminées par cette distribution, modèle probabiliste du monde réel. J.B. Paris et al. ont énoncé un ensemble de sept principes, dit de sens commun, qui caractérise l'inférence dans les bases de connaissances probabilistes consistantes. Poursuivant leurs travaux de définition du sens commun, je suggère l'adhésion à de nouveaux principes régissant le raisonnement dans les bases inconsistantes. Ainsi, je définis les premiers outils théoriques fondés sur des principes pour raisonner de manière probabiliste en tolérant l'inconsistance. Cet ensemble d'outils comprend non seulement des mesures de dissimilarité, d'inconsistance, d'incohérence et de précision, mais aussi un processus d'inférence coïncidant avec celui de J.B. Paris dans le cas consistant. Ce processus d'inférence résout un problème de la théorie du vote, c'est-à-dire l'obtention d'un consensus parmi des opinions contradictoires à propos d'une distribution de probabilité telle que la répartition d'un investissement financier. Finalement, l'inconsistance n'est qu'une forme d'incertitude qui ne doit pas entraver notre raisonnement, ni celui des ordinateurs : peut-être qu'une plus grande confiance leur sera accordée s'ils fondent leurs décisions sur notre sens commun. 2010-02-05 ENG PhD thesis École Nationale Supérieure des Mines de Paris
collection NDLTD
language ENG
sources NDLTD
topic [SPI:AUTO] Engineering Sciences/Automatic
logique
probabilité
inconsistance
base de connaissances
raisonnement
mesure
spellingShingle [SPI:AUTO] Engineering Sciences/Automatic
logique
probabilité
inconsistance
base de connaissances
raisonnement
mesure
Daniel, Lionel
Définition d'une logique probabiliste tolérante à l'inconsistance : appliquée à la reconnaissance de scénarios et à la théorie du vote
description Les humains raisonnent souvent en présence d'informations contradictoires. Dans cette thèse, j'ébauche une axiomatisation du sens commun sous-jacent à ce raisonnement dit paraconsistant. L'implémentation de cette axiomatisation dans les ordinateurs autonomes sera essentielle si nous envisageons de leur déléguer des décisions critiques ; il faudra également vérifier formellement que leurs réactions soient sans risque en toute situation, même incertaine. Une situation incertaine est ici modélisée par une base de connaissances probabilistes éventuellement inconsistante ; c'est un multi-ensemble de contraintes éventuellement insatisfiable sur une distribution de probabilité de phrases d'un langage propositionnel, où un niveau de confiance peut être attribué à chaque contrainte. Le principal problème abordé est l'inférence de la distribution de probabilité qui représente au mieux le monde réel, d'après une base de connaissances donnée. Les réactions de l'ordinateur, préalablement programmées puis vérifiées, seront déterminées par cette distribution, modèle probabiliste du monde réel. J.B. Paris et al. ont énoncé un ensemble de sept principes, dit de sens commun, qui caractérise l'inférence dans les bases de connaissances probabilistes consistantes. Poursuivant leurs travaux de définition du sens commun, je suggère l'adhésion à de nouveaux principes régissant le raisonnement dans les bases inconsistantes. Ainsi, je définis les premiers outils théoriques fondés sur des principes pour raisonner de manière probabiliste en tolérant l'inconsistance. Cet ensemble d'outils comprend non seulement des mesures de dissimilarité, d'inconsistance, d'incohérence et de précision, mais aussi un processus d'inférence coïncidant avec celui de J.B. Paris dans le cas consistant. Ce processus d'inférence résout un problème de la théorie du vote, c'est-à-dire l'obtention d'un consensus parmi des opinions contradictoires à propos d'une distribution de probabilité telle que la répartition d'un investissement financier. Finalement, l'inconsistance n'est qu'une forme d'incertitude qui ne doit pas entraver notre raisonnement, ni celui des ordinateurs : peut-être qu'une plus grande confiance leur sera accordée s'ils fondent leurs décisions sur notre sens commun.
author Daniel, Lionel
author_facet Daniel, Lionel
author_sort Daniel, Lionel
title Définition d'une logique probabiliste tolérante à l'inconsistance : appliquée à la reconnaissance de scénarios et à la théorie du vote
title_short Définition d'une logique probabiliste tolérante à l'inconsistance : appliquée à la reconnaissance de scénarios et à la théorie du vote
title_full Définition d'une logique probabiliste tolérante à l'inconsistance : appliquée à la reconnaissance de scénarios et à la théorie du vote
title_fullStr Définition d'une logique probabiliste tolérante à l'inconsistance : appliquée à la reconnaissance de scénarios et à la théorie du vote
title_full_unstemmed Définition d'une logique probabiliste tolérante à l'inconsistance : appliquée à la reconnaissance de scénarios et à la théorie du vote
title_sort définition d'une logique probabiliste tolérante à l'inconsistance : appliquée à la reconnaissance de scénarios et à la théorie du vote
publisher École Nationale Supérieure des Mines de Paris
publishDate 2010
url http://pastel.archives-ouvertes.fr/pastel-00537758
http://pastel.archives-ouvertes.fr/docs/00/53/77/58/PDF/These-Lionel_Daniel.pdf
work_keys_str_mv AT daniellionel definitiondunelogiqueprobabilistetolerantealinconsistanceappliqueealareconnaissancedescenariosetalatheorieduvote
_version_ 1716396779146051584