Stationary absolute distributions for chains of infinite order

<p>Let {Ƶ<sub>n</sub>}<sup>∞</sup><sub>n = -∞</sub> be a stochastic process with state space S<sub>1</sub> = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions</p...

Full description

Bibliographic Details
Main Author: Hemstead, Robert Jack
Format: Others
Published: 1968
Online Access:https://thesis.library.caltech.edu/9309/1/Hemstead_rj_1968.pdf
Hemstead, Robert Jack (1968) Stationary absolute distributions for chains of infinite order. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/FXKF-R517. https://resolver.caltech.edu/CaltechTHESIS:12072015-112138031 <https://resolver.caltech.edu/CaltechTHESIS:12072015-112138031>
id ndltd-CALTECH-oai-thesis.library.caltech.edu-9309
record_format oai_dc
spelling ndltd-CALTECH-oai-thesis.library.caltech.edu-93092019-12-21T03:06:23Z Stationary absolute distributions for chains of infinite order Hemstead, Robert Jack <p>Let {Ƶ<sub>n</sub>}<sup>∞</sup><sub>n = -∞</sub> be a stochastic process with state space S<sub>1</sub> = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions</p> <p>Q<sub>i</sub>(i<sup>(0)</sup>) = Ƥ(Ƶ<sub>n</sub> = i | Ƶ<sub>n - 1</sub> = i <sup>(0)</sup><sub>1</sub>, Ƶ<sub>n - 2</sub> = i <sup>(0)</sup><sub>2</sub>, …) (i ɛ S<sub>1</sub>), where i<sup>(0)</sup> = (i<sup>(0)</sup><sub>1</sub>, i<sup>(0)</sup><sub>2</sub>, …) ranges over infinite sequences from S<sub>1</sub>. If i<sup>(n)</sup> = (i<sup>(n)</sup><sub>1</sub>, i<sup>(n)</sup><sub>2</sub>, …) for n = 1, 2,…, then i<sup>(n)</sup> → i<sup>(0)</sup> means that for each k, i<sup>(n)</sup><sub>k</sub> = i<sup>(0)</sup><sub>k</sub> for all n sufficiently large.</p> <p>Given functions Q<sub>i</sub>(i<sup>(0)</sup>) such that </p> <p> (i) 0 ≤ Q<sub>i</sub>(i<sup>(0</sup>) ≤ ξ ˂ 1</p> <p>(ii)D – 1/Ʃ/i = 0 Q<sub>i</sub>(i<sup>(0)</sup>) Ξ 1 </p> <p>(iii) Q<sub>i</sub>(i<sup>(n)</sup>) → Q<sub>i</sub>(i<sup>(0)</sup>) whenever i<sup>(n)</sup> → i<sup>(0)</sup>,</p> <p>we prove the existence of a stationary chain of infinite order {Ƶ<sub>n</sub>} whose transitions are given by</p> <p>Ƥ (Ƶ<sub>n</sub> = i | Ƶ<sub>n - 1</sub>, Ƶ<sub>n - 2</sub>, …) = Q<sub>i</sub>(Ƶ<sub>n - 1</sub>, Ƶ<sub>n - 2</sub>, …)</p> <p>With probability 1. The method also yields stationary chains {Ƶ<sub>n</sub>} for which (iii) does not hold but whose transition probabilities are, in a sense, “locally Markovian.” These and similar results extend a paper by T.E. Harris [<u>Pac. J. Math.,</u> 5 (1955), 707-724].</p> <p>Included is a new proof of the existence and uniqueness of a stationary absolute distribution for an Nth order Markov chain in which all transitions are possible. This proof allows us to achieve our main results without the use of limit theorem techniques.</p> 1968 Thesis NonPeerReviewed application/pdf https://thesis.library.caltech.edu/9309/1/Hemstead_rj_1968.pdf https://resolver.caltech.edu/CaltechTHESIS:12072015-112138031 Hemstead, Robert Jack (1968) Stationary absolute distributions for chains of infinite order. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/FXKF-R517. https://resolver.caltech.edu/CaltechTHESIS:12072015-112138031 <https://resolver.caltech.edu/CaltechTHESIS:12072015-112138031> https://thesis.library.caltech.edu/9309/
collection NDLTD
format Others
sources NDLTD
description <p>Let {Ƶ<sub>n</sub>}<sup>∞</sup><sub>n = -∞</sub> be a stochastic process with state space S<sub>1</sub> = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions</p> <p>Q<sub>i</sub>(i<sup>(0)</sup>) = Ƥ(Ƶ<sub>n</sub> = i | Ƶ<sub>n - 1</sub> = i <sup>(0)</sup><sub>1</sub>, Ƶ<sub>n - 2</sub> = i <sup>(0)</sup><sub>2</sub>, …) (i ɛ S<sub>1</sub>), where i<sup>(0)</sup> = (i<sup>(0)</sup><sub>1</sub>, i<sup>(0)</sup><sub>2</sub>, …) ranges over infinite sequences from S<sub>1</sub>. If i<sup>(n)</sup> = (i<sup>(n)</sup><sub>1</sub>, i<sup>(n)</sup><sub>2</sub>, …) for n = 1, 2,…, then i<sup>(n)</sup> → i<sup>(0)</sup> means that for each k, i<sup>(n)</sup><sub>k</sub> = i<sup>(0)</sup><sub>k</sub> for all n sufficiently large.</p> <p>Given functions Q<sub>i</sub>(i<sup>(0)</sup>) such that </p> <p> (i) 0 ≤ Q<sub>i</sub>(i<sup>(0</sup>) ≤ ξ ˂ 1</p> <p>(ii)D – 1/Ʃ/i = 0 Q<sub>i</sub>(i<sup>(0)</sup>) Ξ 1 </p> <p>(iii) Q<sub>i</sub>(i<sup>(n)</sup>) → Q<sub>i</sub>(i<sup>(0)</sup>) whenever i<sup>(n)</sup> → i<sup>(0)</sup>,</p> <p>we prove the existence of a stationary chain of infinite order {Ƶ<sub>n</sub>} whose transitions are given by</p> <p>Ƥ (Ƶ<sub>n</sub> = i | Ƶ<sub>n - 1</sub>, Ƶ<sub>n - 2</sub>, …) = Q<sub>i</sub>(Ƶ<sub>n - 1</sub>, Ƶ<sub>n - 2</sub>, …)</p> <p>With probability 1. The method also yields stationary chains {Ƶ<sub>n</sub>} for which (iii) does not hold but whose transition probabilities are, in a sense, “locally Markovian.” These and similar results extend a paper by T.E. Harris [<u>Pac. J. Math.,</u> 5 (1955), 707-724].</p> <p>Included is a new proof of the existence and uniqueness of a stationary absolute distribution for an Nth order Markov chain in which all transitions are possible. This proof allows us to achieve our main results without the use of limit theorem techniques.</p>
author Hemstead, Robert Jack
spellingShingle Hemstead, Robert Jack
Stationary absolute distributions for chains of infinite order
author_facet Hemstead, Robert Jack
author_sort Hemstead, Robert Jack
title Stationary absolute distributions for chains of infinite order
title_short Stationary absolute distributions for chains of infinite order
title_full Stationary absolute distributions for chains of infinite order
title_fullStr Stationary absolute distributions for chains of infinite order
title_full_unstemmed Stationary absolute distributions for chains of infinite order
title_sort stationary absolute distributions for chains of infinite order
publishDate 1968
url https://thesis.library.caltech.edu/9309/1/Hemstead_rj_1968.pdf
Hemstead, Robert Jack (1968) Stationary absolute distributions for chains of infinite order. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/FXKF-R517. https://resolver.caltech.edu/CaltechTHESIS:12072015-112138031 <https://resolver.caltech.edu/CaltechTHESIS:12072015-112138031>
work_keys_str_mv AT hemsteadrobertjack stationaryabsolutedistributionsforchainsofinfiniteorder
_version_ 1719304371348439040