Stationary absolute distributions for chains of infinite order

<p>Let {Ƶ<sub>n</sub>}<sup>∞</sup><sub>n = -∞</sub> be a stochastic process with state space S<sub>1</sub> = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions</p...

Full description

Bibliographic Details
Main Author: Hemstead, Robert Jack
Format: Others
Published: 1968
Online Access:https://thesis.library.caltech.edu/9309/1/Hemstead_rj_1968.pdf
Hemstead, Robert Jack (1968) Stationary absolute distributions for chains of infinite order. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/FXKF-R517. https://resolver.caltech.edu/CaltechTHESIS:12072015-112138031 <https://resolver.caltech.edu/CaltechTHESIS:12072015-112138031>
Description
Summary:<p>Let {Ƶ<sub>n</sub>}<sup>∞</sup><sub>n = -∞</sub> be a stochastic process with state space S<sub>1</sub> = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions</p> <p>Q<sub>i</sub>(i<sup>(0)</sup>) = Ƥ(Ƶ<sub>n</sub> = i | Ƶ<sub>n - 1</sub> = i <sup>(0)</sup><sub>1</sub>, Ƶ<sub>n - 2</sub> = i <sup>(0)</sup><sub>2</sub>, …) (i ɛ S<sub>1</sub>), where i<sup>(0)</sup> = (i<sup>(0)</sup><sub>1</sub>, i<sup>(0)</sup><sub>2</sub>, …) ranges over infinite sequences from S<sub>1</sub>. If i<sup>(n)</sup> = (i<sup>(n)</sup><sub>1</sub>, i<sup>(n)</sup><sub>2</sub>, …) for n = 1, 2,…, then i<sup>(n)</sup> → i<sup>(0)</sup> means that for each k, i<sup>(n)</sup><sub>k</sub> = i<sup>(0)</sup><sub>k</sub> for all n sufficiently large.</p> <p>Given functions Q<sub>i</sub>(i<sup>(0)</sup>) such that </p> <p> (i) 0 ≤ Q<sub>i</sub>(i<sup>(0</sup>) ≤ ξ ˂ 1</p> <p>(ii)D – 1/Ʃ/i = 0 Q<sub>i</sub>(i<sup>(0)</sup>) Ξ 1 </p> <p>(iii) Q<sub>i</sub>(i<sup>(n)</sup>) → Q<sub>i</sub>(i<sup>(0)</sup>) whenever i<sup>(n)</sup> → i<sup>(0)</sup>,</p> <p>we prove the existence of a stationary chain of infinite order {Ƶ<sub>n</sub>} whose transitions are given by</p> <p>Ƥ (Ƶ<sub>n</sub> = i | Ƶ<sub>n - 1</sub>, Ƶ<sub>n - 2</sub>, …) = Q<sub>i</sub>(Ƶ<sub>n - 1</sub>, Ƶ<sub>n - 2</sub>, …)</p> <p>With probability 1. The method also yields stationary chains {Ƶ<sub>n</sub>} for which (iii) does not hold but whose transition probabilities are, in a sense, “locally Markovian.” These and similar results extend a paper by T.E. Harris [<u>Pac. J. Math.,</u> 5 (1955), 707-724].</p> <p>Included is a new proof of the existence and uniqueness of a stationary absolute distribution for an Nth order Markov chain in which all transitions are possible. This proof allows us to achieve our main results without the use of limit theorem techniques.</p>