Carbon-Hydrogen Bond Activation by Peralkylhafnocene and Peralkylscandocene Derivatives

<p>Chapter 1</p> <p>Thermal decomposition of Cp*<sub>2</sub>Hf(CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (Cp* = (η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)) in benzene-d&l...

Full description

Bibliographic Details
Main Author: Bulls, Al Ray
Format: Others
Language:en
Published: 1988
Online Access:https://thesis.library.caltech.edu/7403/3/Bulls_ar_1988.pdf
Bulls, Al Ray (1988) Carbon-Hydrogen Bond Activation by Peralkylhafnocene and Peralkylscandocene Derivatives. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/ZSJW-KC36. https://resolver.caltech.edu/CaltechTHESIS:01172013-130132630 <https://resolver.caltech.edu/CaltechTHESIS:01172013-130132630>
Description
Summary:<p>Chapter 1</p> <p>Thermal decomposition of Cp*<sub>2</sub>Hf(CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (Cp* = (η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)) in benzene-d<sub>6</sub> cleanly affords toluene and hafnabenzocyclobutene [chemical symbol; see abstract in scanned thesis for details]. Deuterium labeling of the benzyl ligands indicates that decomposition of Cp*<sub>2</sub>Hf(CY<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (Y = H, D) proceeds primarily by α-H abstraction to form a permethylhafnocene benzylidene intermediate [Cp*<sub>2</sub>Hf=CHC<sub>6</sub>H<sub>5</sub>], which rapidly rearranges to the metallated-cyclopentadienyl, or "tucked-in" benzyl complex Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>)HfCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>. The observed product arises from rearrangement of Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>)HfCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> to its tautomer [chemical symbol; see abstract in scanned thesis for details]. A series of meta substituted benzyl derivatives of the proposed metallated cyclopentadienyl intermediates, Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>)HfCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>X (X = H, CH<sub>3</sub>, CF<sub>3</sub>, NMe<sub>2</sub>), has therefore been prepared. The kinetics of their conversion to [chemical symbol; see abstract in scanned thesis for details] have been examined in order to probe the nature of the transition state for aryl C-H bond activation which occurs in the final steps of the rearrangement. The rates are found to be insensitive to the nature of X, suggesting that the benzyl π system is not attacked by the electrophilic hafnium center along the reaction coordinate for C-H bond activation. The structure of Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>)HfCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>, as determined by single crystal X-ray diffraction techniques, indicates that the complex is best described as a Hf(IV) derivative containing an η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub> Iigand, rather than a Hf(ll) η<sup>6</sup>-fulvene adduct. Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>)HfCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> crystallizes in the triclinic space group P1&#773; (a= 9.084(2), b = 10.492(2), c = 12.328(1) Å; α = 95.81(1), β = 96.60(1), γ = 91.15(2); Z = 2). Least-squares refinement led to a value for R of 0.048 (I &gt; 3σI) and a goodness-of-fit of 4.37 for 4029 independent reflections.</p> <p>Chapter 2</p> <p>Thermolysis of the singly metallated complex Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>)Hf(CH<sub>2</sub>CMe<sub>3</sub>) in toluene affords neopentane and the doubly metallated complex Cp*(η<sup>5</sup>,η<sup>1</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>)Hf. The structure of Cp*(η<sup>5</sup>,η<sup>1</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>)Hf, as determined by single-crystal X-ray diffraction techniques, confirms that metallation has occurred at adjacent methyl groups of the same pentamethylcyclopentadienyl ring. Cp*(η<sup>5</sup>,η<sup>1</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>)Hf crystallizes in the space group P2/c (a= 13.775(4) Å, b = 9.516(1) Å, c = 14.183(6) Å; β = 103.965(31)°, z = 4). Least squares refinement led to a value for R of 0.036 (I &gt; 3σ<sub>i</sub>) and a goodness-of-fit of 2.66 for 1984 independent reflections. Cp*(η<sup>5</sup>,η<sup>1</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>)Hf and Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>)Hfl cleanly insert one equivalent of ethylene into the hafnium methylene carbon bond to form the propyl bridged species Cp*(η<sup>5</sup>,η<sup>1</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>3</sub>(CH<sub>2</sub>)(CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>))Hf and Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>)Hfl, respectively. Cp*(η<sup>5</sup>,η<sup>1</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>3</sub>(CH<sub>2</sub>)(CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>))Hf reacts with excess ethylene to cleanly afford [chemical symbol; see abstract in scanned thesis for details]. Deuterium labeling experiments suggest that this reaction occurs via an α-H abstraction to generate the alkylidene intermediate Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>CH<sub>2</sub>CH=)Hf, which rapidly traps ethylene to form the observed product. The metallated phenyl complex Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>3</sub>CH<sub>2</sub>)HfC<sub>6</sub>H<sub>5</sub> has been shown to be in equilibrium with the benzyne complex Cp*<sub>2</sub>Hf(η<sup>2</sup>-C<sub>6</sub>H<sub>4</sub>). Heating benzene-d<sub>6</sub> solutions of Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>3</sub>CH<sub>2</sub>)HfC<sub>6</sub>H<sub>5</sub> in the presence of ethylene traps the benzyne intermediate and generates the hafnacyclopentene [chemical symbol; see abstract in scanned thesis for details].</p> <p>Chapter 4</p> <p>Relative bond dissociation energies (BDEs) have been obtained by equilibrating early transition metal alkyls and hydrides with H<sub>2</sub> or the C-H bonds of hydrocarbons. Thus, in benzene solution Cp*<sub>2</sub>HfH<sub>2</sub> (Cp* = (η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)) equilibrates with Cp*<sub>2</sub>Hf(C<sub>6</sub>H<sub>5</sub>)H and dihydrogen. From the enthalpy of the reaction, ΔH° = +6.0(3), the Hf-H (BDE) is calculated to be 0.8(3) kcal·mol<sup>-1</sup> stronger than the Hf-C<sub>6</sub>H<sub>5</sub> BDE. Relative Sc-C<sub>6</sub>H<sub>5</sub> and Sc-alkyl BDEs have been estimated from the equilibration of the metallated complex Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>)Sc, C<sub>6</sub>H<sub>6</sub> and Cp*(η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>)Sc(C<sub>6</sub>H<sub>5</sub>), the Sc-C<sub>6</sub>H<sub>5</sub> BDE being 16.6(3) kcal·mol<sup>-1</sup> stronger than the Sc-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>C<sub>5</sub>Me<sub>4</sub> BDE. From a similar reversible intramolecular metallation of Cp*(η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>)HfH<sub>2</sub> to give Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>)HfH and dihydrogen, the Hf-H BDE is estimated to be 23.0(3) kcal·mol<sup>-1</sup> stronger than the Hf-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>C<sub>5</sub>Me<sub>4</sub> BDE. The equilibration of Cp*(η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)Sc-C≡CCMe<sub>3</sub> with the metallated scandocene derivative Cp*(η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>-o-C<sub>6</sub>H<sub>4</sub>)Sc and tert-butylacetylene lies very far towards Cp*(η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)Sc-C≡CCMe<sub>3</sub>, so that only a lower limit for the relative Sc-alkynyl and Sc-aryl BDEs may be determined: BDE(Sc-alkynyl) - BDE(Sc-aryl) ≥ 29(5) kcal·mol<sup>-1</sup>. These early transition metal-hydrocarbyl (M-R) BDEs correlate with the corresponding H-R BDEs (i.e. M-alkynyl > M-aryl > M-alkyl); however, the M-R BDEs increase more rapidly with s character than does the H-R BDEs. The origin of this effect is not known, but it is undoubtedly also responsible for the characteristically high M-H BDEs for transition metal hydride compounds. In an effort to probe the polarity of Sc-aryl bonds a series of scandocene derivatives capable of reversibly metallating at either of two differently substituted benzyl groups was prepared. The equilibrium constants for these metallated derivatives: (η<sup>5</sup>,η<sup>1</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>-o-C<sub>6</sub>H<sub>3</sub>-p-X)(η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-m-CH<sub>3</sub>)Sc ⇌ (η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>-m-X)(η<sup>5</sup>,η<sup>1</sup>- C<sub>5</sub>Me<sub>4</sub>CH<sub>2</sub>-o-C<sub>6</sub>H<sub>3</sub>-p-CH<sub>3</sub>)Sc (X= H, CF<sub>3</sub>, NMe<sub>2</sub>) were determined. The small dependence of Keq on the nature of X suggests that the Sc-aryl bond is essentially covalent with only a slight ionic character.</p>