Heat Transfer in Compressible Laminar Boundary-Layers

<p>This report is concerned with the investigation of skin-friction and heat-transfer in the two-dimensional flow of a viscous compressible fluid.</p> <p>The boundary-layer equations are first transformed by the Howarth-Stewartson transformation and then it is shown that for flu...

Full description

Bibliographic Details
Main Author: Lal, Shankar
Format: Others
Language:en
Published: 1955
Online Access:https://thesis.library.caltech.edu/4761/1/Lal_s_1955.pdf
Lal, Shankar (1955) Heat Transfer in Compressible Laminar Boundary-Layers. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/BRKX-WV81. https://resolver.caltech.edu/CaltechETD:etd-12042003-095744 <https://resolver.caltech.edu/CaltechETD:etd-12042003-095744>
id ndltd-CALTECH-oai-thesis.library.caltech.edu-4761
record_format oai_dc
spelling ndltd-CALTECH-oai-thesis.library.caltech.edu-47612021-04-21T05:01:18Z https://thesis.library.caltech.edu/4761/ Heat Transfer in Compressible Laminar Boundary-Layers Lal, Shankar <p>This report is concerned with the investigation of skin-friction and heat-transfer in the two-dimensional flow of a viscous compressible fluid.</p> <p>The boundary-layer equations are first transformed by the Howarth-Stewartson transformation and then it is shown that for fluids of Prandtl Number unity, if the Chapman viscosity law be assumed to hold, then any boundary-layer problem with the free stream Mach Number different from zero can be formally reduced to a problem for which the free stream Mach Number is equal to zero.</p> <p>The momentum method is then used to solve the boundary-layer equations in the Howarth-Stewartson form, for the case when the free stream Mach Number is zero. The basic equations developed are first used to solve the case of those specific pressure gradients which lead to "similarity flows". Other investigators have solved the exact equation for these flows on the differential analyser. The results obtained in this report, with the aid of very simple methods, agree to within a few percent with these more exact but laborious computations.</p> <p>The use of the method for the case of arbitrary pressure gradients is then developed. Three ways of solving the resulting equations are discussed. In particular, an integral solution for the square of the momentum thickness, analogous to the one existing for incompressible fluids but with different exponents, is given. The application of the method is demonstrated by solving an illustrative example.</p> 1955 Thesis NonPeerReviewed application/pdf en other https://thesis.library.caltech.edu/4761/1/Lal_s_1955.pdf Lal, Shankar (1955) Heat Transfer in Compressible Laminar Boundary-Layers. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/BRKX-WV81. https://resolver.caltech.edu/CaltechETD:etd-12042003-095744 <https://resolver.caltech.edu/CaltechETD:etd-12042003-095744> https://resolver.caltech.edu/CaltechETD:etd-12042003-095744 CaltechETD:etd-12042003-095744 10.7907/BRKX-WV81
collection NDLTD
language en
format Others
sources NDLTD
description <p>This report is concerned with the investigation of skin-friction and heat-transfer in the two-dimensional flow of a viscous compressible fluid.</p> <p>The boundary-layer equations are first transformed by the Howarth-Stewartson transformation and then it is shown that for fluids of Prandtl Number unity, if the Chapman viscosity law be assumed to hold, then any boundary-layer problem with the free stream Mach Number different from zero can be formally reduced to a problem for which the free stream Mach Number is equal to zero.</p> <p>The momentum method is then used to solve the boundary-layer equations in the Howarth-Stewartson form, for the case when the free stream Mach Number is zero. The basic equations developed are first used to solve the case of those specific pressure gradients which lead to "similarity flows". Other investigators have solved the exact equation for these flows on the differential analyser. The results obtained in this report, with the aid of very simple methods, agree to within a few percent with these more exact but laborious computations.</p> <p>The use of the method for the case of arbitrary pressure gradients is then developed. Three ways of solving the resulting equations are discussed. In particular, an integral solution for the square of the momentum thickness, analogous to the one existing for incompressible fluids but with different exponents, is given. The application of the method is demonstrated by solving an illustrative example.</p>
author Lal, Shankar
spellingShingle Lal, Shankar
Heat Transfer in Compressible Laminar Boundary-Layers
author_facet Lal, Shankar
author_sort Lal, Shankar
title Heat Transfer in Compressible Laminar Boundary-Layers
title_short Heat Transfer in Compressible Laminar Boundary-Layers
title_full Heat Transfer in Compressible Laminar Boundary-Layers
title_fullStr Heat Transfer in Compressible Laminar Boundary-Layers
title_full_unstemmed Heat Transfer in Compressible Laminar Boundary-Layers
title_sort heat transfer in compressible laminar boundary-layers
publishDate 1955
url https://thesis.library.caltech.edu/4761/1/Lal_s_1955.pdf
Lal, Shankar (1955) Heat Transfer in Compressible Laminar Boundary-Layers. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/BRKX-WV81. https://resolver.caltech.edu/CaltechETD:etd-12042003-095744 <https://resolver.caltech.edu/CaltechETD:etd-12042003-095744>
work_keys_str_mv AT lalshankar heattransferincompressiblelaminarboundarylayers
_version_ 1719397452991168512