Convex Cone Conditions on the Structure of Designs
Various known and original inequalities concerning the structure of combinatorial designs are established using polyhedral cones generated by incidence matrices. This work begins by giving definitions and elementary facts concerning t-designs. A connection with the incidence matrix W of t-subsets...
Main Author: | |
---|---|
Format: | Others |
Language: | en |
Published: |
2003
|
Online Access: | https://thesis.library.caltech.edu/2876/1/thesis.pdf Dukes, Peter James (2003) Convex Cone Conditions on the Structure of Designs. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/V7F7-FQ47. https://resolver.caltech.edu/CaltechETD:etd-07142002-210918 <https://resolver.caltech.edu/CaltechETD:etd-07142002-210918> |
id |
ndltd-CALTECH-oai-thesis.library.caltech.edu-2876 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-CALTECH-oai-thesis.library.caltech.edu-28762021-02-12T05:01:28Z https://thesis.library.caltech.edu/2876/ Convex Cone Conditions on the Structure of Designs Dukes, Peter James Various known and original inequalities concerning the structure of combinatorial designs are established using polyhedral cones generated by incidence matrices. This work begins by giving definitions and elementary facts concerning t-designs. A connection with the incidence matrix W of t-subsets versus k-subsets of a finite set is mentioned. The opening chapter also discusses relevant facts about convex geometry (in particular, the Farkas Lemma) and presents an arsenal of binomial identities. The purpose of Chapter 2 is to study the cone generated by columns of W, viewed as an increasing union of cones with certain invariant automorphisms. The two subsequent chapters derive inequalities on block density and intersection patterns in t-designs. Chapter 5 outlines generalizations of W which correspond to hypergraph designs and poset designs. To conclude, an easy consequence of this theory for orthogonal arrays is used in a computing application which generalizes the method of two-point based sampling 2003 Thesis NonPeerReviewed application/pdf en other https://thesis.library.caltech.edu/2876/1/thesis.pdf Dukes, Peter James (2003) Convex Cone Conditions on the Structure of Designs. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/V7F7-FQ47. https://resolver.caltech.edu/CaltechETD:etd-07142002-210918 <https://resolver.caltech.edu/CaltechETD:etd-07142002-210918> https://resolver.caltech.edu/CaltechETD:etd-07142002-210918 CaltechETD:etd-07142002-210918 10.7907/V7F7-FQ47 |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
description |
Various known and original inequalities concerning the structure of combinatorial designs are established using polyhedral cones generated by incidence matrices. This work begins by giving definitions and elementary facts concerning t-designs. A connection with the incidence matrix W of t-subsets versus k-subsets of a finite set is mentioned. The opening chapter also discusses relevant facts about convex geometry (in particular, the Farkas Lemma) and presents an arsenal of binomial identities. The purpose of Chapter 2 is to study the cone generated by columns of W, viewed as an increasing union of cones with certain invariant automorphisms. The two subsequent chapters derive inequalities on block density and intersection patterns in t-designs. Chapter 5 outlines generalizations of W which correspond to hypergraph designs and poset designs. To conclude, an easy consequence of this theory for orthogonal arrays is used in a computing application which generalizes the method of two-point based sampling |
author |
Dukes, Peter James |
spellingShingle |
Dukes, Peter James Convex Cone Conditions on the Structure of Designs |
author_facet |
Dukes, Peter James |
author_sort |
Dukes, Peter James |
title |
Convex Cone Conditions on the Structure of Designs |
title_short |
Convex Cone Conditions on the Structure of Designs |
title_full |
Convex Cone Conditions on the Structure of Designs |
title_fullStr |
Convex Cone Conditions on the Structure of Designs |
title_full_unstemmed |
Convex Cone Conditions on the Structure of Designs |
title_sort |
convex cone conditions on the structure of designs |
publishDate |
2003 |
url |
https://thesis.library.caltech.edu/2876/1/thesis.pdf Dukes, Peter James (2003) Convex Cone Conditions on the Structure of Designs. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/V7F7-FQ47. https://resolver.caltech.edu/CaltechETD:etd-07142002-210918 <https://resolver.caltech.edu/CaltechETD:etd-07142002-210918> |
work_keys_str_mv |
AT dukespeterjames convexconeconditionsonthestructureofdesigns |
_version_ |
1719376348725641216 |