Tethered Motion Planning for a Rappelling Robot
<p>The Jet Propulsion Laboratory and Caltech developed the Axel rover to investigate and demonstrate the potential for tethered extreme terrain mobility, such as allowing access to science targets on the steep crater walls of other planets. Tether management is a key issue for Axel and other r...
Summary: | <p>The Jet Propulsion Laboratory and Caltech developed the Axel rover to investigate and demonstrate the potential for tethered extreme terrain mobility, such as allowing access to science targets on the steep crater walls of other planets. Tether management is a key issue for Axel and other rappelling rovers. Avoiding tether entanglement constrains the robot's valid motions to the set of outgoing and returning path pairs that are homotopic to each other. In the case of a robot on a steep slope, a motion planner must additionally ensure that this ascent-descent path pair is feasible, based on the climbing forces provided by the tether. This feasibility check relies on the taut tether configuration, which is the shortest path in the homotopy class of the ascent-descent path pair. </p>
<p>This dissertation presents a novel algorithm for tethered motion planning in extreme terrains, produced by combining shortest-homotopic-path algorithms from the topology and computational geometry communities with traditional graph search methods. The resulting tethered motion planning algorithm searches for this shortest path, checks for feasibility, and then generates waypoints for an ascent-descent path pair in the same homotopy class. I demonstrate the implementation of this algorithm on a Martian crater data set such as might be seen for a typical mission. By searching only for the shortest path, and ordering that search according to a heuristic, this algorithm proceeds more efficiently than previous tethered path-planning algorithms for extreme terrain. </p>
<p>Frictional tether-terrain interaction may cause dangerously intermittent and unstable tether obstacles, which can be categorized based on their stability. Force-balance equations from the rope physics literature provide a set of tether and terrain conditions for static equilibrium, which can be used to determine if a given tether configuration will stick to a given surface based on tether tension. By estimating the tension of Axel's tether when driving, I divide potential tether tension obstacles into the following categories: acting as obstacles, acting as non-obstacles, and hazardous intermittent obstacles where it is uncertain whether the tether would slip or stick under normal driving tension variance. This dissertation describes how to modify the obstacle map as the categorization of obstacles fluctuates, and how to alter a motion plan around the dangerous tether friction obstacles. Together, these algorithms and methods form a framework for tethered motion planning on extreme terrain.</p> |
---|